首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
以R134a为工质,在不同工况条件下采用两段式喷嘴引射器对两相流引射制冷系统进行了实验研究,分析了冷凝温度和蒸发温度对R134a两相流引射制冷系统性能COP和引射比的影响,并与传统制冷循环系统进行了比较。实验结果表明:对于一定几何尺寸的引射器,系统COP随冷凝温度的升高而降低,随蒸发温度的升高而增大,在冷凝温度为40℃时,蒸发温度为1℃时,使用两段式喷嘴引射器时系统的COP要比传统蒸汽压缩循环的COP高22.7%,两相流引射制冷循环系统在较低的冷凝温度下更具有优势。  相似文献   

2.
对R41/R404A复叠式制冷循环进行理论研究,分别对高低温压缩机的排气温度、压缩机的功耗、系统性能系数COP、系统的效率η、损失X以及系统中各个部件的损失所占的比例随蒸发温度T_e的变化规律进行分析。研究结果表明:R41/R404A复叠制冷系统存在一个最高COP对应的最佳低温循环冷凝温度T_4opt,且T_4opt随着蒸发温度的升高而升高;高低温循环的压缩机排气温度随着蒸发温度T_e的降低而升高,低温级压缩机排气温度升高的幅度远大于高温级压缩机排气温度;压缩机的输入功率随蒸发温度的升高而降低;COP随着蒸发温度的升高而升高,蒸发温度从-60℃升高到-30℃时,COP从1.04增加到1.83;系统损失随着蒸发温度的升高而降低,从蒸发温度-60℃到-30℃,系统损失从5.4k W降到3k W。系统的最佳效率随着蒸发温度的升高,呈现先增加后减小的趋势,在蒸发温度为-36℃时,最佳效率最大值为44.4%;损失主要部件是冷凝蒸发器、高温级的节流机构和高温级压缩机,三个部件的损失之和最大为60.4%,最低为57.6%。蒸发器和冷凝器的不可逆损失最小,其比例不到10%。  相似文献   

3.
对R41/R404A复叠式制冷循环进行理论研究,分别对高低温压缩机的排气温度、压缩机的功耗、系统性能系数COP、系统的效率η、损失X以及系统中各个部件的损失所占的比例随蒸发温度T_e的变化规律进行分析。研究结果表明:R41/R404A复叠制冷系统存在一个最高COP对应的最佳低温循环冷凝温度T_4opt,且T_4opt随着蒸发温度的升高而升高;高低温循环的压缩机排气温度随着蒸发温度T_e的降低而升高,低温级压缩机排气温度升高的幅度远大于高温级压缩机排气温度;压缩机的输入功率随蒸发温度的升高而降低;COP随着蒸发温度的升高而升高,蒸发温度从-60℃升高到-30℃时,COP从1.04增加到1.83;系统损失随着蒸发温度的升高而降低,从蒸发温度-60℃到-30℃,系统损失从5.4k W降到3k W。系统的最佳效率随着蒸发温度的升高,呈现先增加后减小的趋势,在蒸发温度为-36℃时,最佳效率最大值为44.4%;损失主要部件是冷凝蒸发器、高温级的节流机构和高温级压缩机,三个部件的损失之和最大为60.4%,最低为57.6%。蒸发器和冷凝器的不可逆损失最小,其比例不到10%。  相似文献   

4.
为进一步研究跨临界CO_2热泵的系统性能,针对所设计CO_2热泵系统进行实验。实验结果表明:在风机频率一定时,系统热负荷、压缩机轴功率、系统出风温度均随压缩机频率的增大而增大。蒸发温度从-2℃升至4℃,COP增幅为26%,CO_2在气冷器出口温度降低10℃左右时,系统COP增幅大于30%。实验工况下跨临界CO_2热泵系统出风温度变化范围在50℃-100℃,在获得大于75℃出风温度时,热力学第二定律效率超过30%,CO_2气冷器出口温度、高压侧压力、蒸发温度的升高都会提高系统热力学第二定律效率。  相似文献   

5.
建立了系统热力学性能计算模型,分析了HFC134 a喷射系统的蒸发温度、喷嘴效率等参数对系统性能的影响。研究表明,冷凝温度改变对系统性能和喷射系数的影响大于蒸发温度的影响;混合效率每减小1%,系统COP减小5%左右;系统COP随蒸发温度的增而增,随冷凝温度的增而减。HFC134 a喷射系统设计时,尽量使蒸发温度在4—12℃,冷凝温度在30—36℃之间变化,该研究为HFC134 a在喷射系统中的设计和优化提供了技术支持。  相似文献   

6.
带有蓄热装置的直膨式太阳能热泵系统的模拟研究   总被引:1,自引:0,他引:1  
介绍了一种带有相变蓄热装置的直膨式太阳能热泵系统。以青岛天气为例,对该系统的蓄热模式进行数值模拟,得出蓄热装置进出口制冷剂的温度、蓄热材料的液相率随时间的变化,结果表明在太阳能辐射量变化时,该系统的蒸发温度维持25℃左右,系统能够稳定运行;对系统热力学性质进行理论计算得出系统在冷凝温度为70℃时,系统的COP能维持在5.3左右,系统能够高效运行。  相似文献   

7.
《低温与超导》2021,49(4):64-70
为了研究高温级输气量对R410A/R410A变频复叠制冷系统的影响,搭建了变频复叠制冷系统实验台。实验研究了高温级输气量在不同工况下对R410A单一制冷剂变频复叠制冷系统性能的影响规律。实验结果表明:冷凝温度为30℃、蒸发温度为-34~-42℃,高温级压缩机排气温度低于120℃,系统可以安全稳定运行;蒸发温度为-42℃时,高温级输气量从4.44×10~(-4)m~3/s增加到8.82×10~(-4) m~3/s,系统制冷量增加了81.65%,即高温级输气量每增加5.5×10~(-5) m~3/s,制冷量平均增加10.21%;蒸发温度越低,制冷量增长速度越快;系统性能系数COP随着高温级输气量的增加先增大后减小,存在最佳输气量,通过工况及高温级输气量对系统影响的实验结果拟合得到了COP的优化关联式和最佳高温级输气量的优化关联式,为实际应用中高温级输气量的选择提供参考依据。  相似文献   

8.
近年来,高温热泵机组广泛应用臭氧破坏势ODP为0、温室效应GWP较低的R245fa工质,为此,本文对机组的膨胀阀和水系统进行优化改进,并对R245fa过热度实现精确控制,而后在蒸发器侧平均水温为40~60℃的工况下进行实验。结果表明,在蒸发器侧平均水温60℃时,冷凝器侧出水温度最高可达105.8℃,此工况下的COP为2.701,此时排气温度和冷凝压力均较低,符合机组安全运行的要求。  相似文献   

9.
为提高制冷系统运行性能、优化系统结构设计,用EES软件对可实现复叠与双级压缩转换的制冷系统进行模拟分析,分析对比了复叠循环与双级压缩循环、级间容量比及高温级频率对复叠循环的影响。结果表明:蒸发温度对复叠循环和双级压缩循环系统COP的影响都很大,且蒸发温度较低工况下,应选用复叠循环以提高系统COP。对于复叠循环:蒸发温度和冷凝温度一定,随级间容量比的增加,复叠式制冷系统的中间温度降低,级间容量比与冷凝温度一定,蒸发温度每上升1℃,系统的中间温度增加1.5℃;当工况一定时,系统COP随级间容量比的增加呈现出先增大后减小的变化趋势,故对于固定工况下的复叠式制冷系统存在一个使系统COP最优的级间容量比;随高温级频率增大,系统的级间容量比减小,系统的COP先增大后缓慢减小,在达到最佳COP后,系统运行稳定。  相似文献   

10.
为研究压缩机频率对双级压缩制冷系统性能的影响,通过实验,改变高温级压缩机频率来调节系统中间压力,分析一次节流中间不完全冷却双级压缩制冷系统性能的变化。研究表明,在冷凝温度30℃、蒸发温度-30~-40℃的工况下,固定低压级压缩机频率,当高压级压缩机频率一定时,系统COP随着蒸发温度的升高而升高;当蒸发温度一定时,高压级压缩机频率从45 Hz升高到75 Hz,系统中间压力小幅上升,压缩机功耗增加,制冷量增加,系统COP呈现先增大、后减小的变化趋势,故存在一个最优运行频率使系统运行达到最佳状态。  相似文献   

11.
非共沸混合工质自复叠热泵循环试验研究   总被引:3,自引:1,他引:2  
单级压缩式热泵冷凝温度与蒸发温度之差一般为40~50℃,非共沸混合工质自复叠循环具有工作温差大的优点,将其应用于热泵循环,则可产生较大的供热温差。该文通过搭建一个空气源自复叠热泵实验台,利用NIST公司的制冷剂物性数据库Refprop7,绘制出了混合工质的温度-浓度图。经过实验,分析了自复叠热泵循环工作温差的影响因素,得出了自复叠热泵气液分离器简单分离对增大工作温差的作用有限,增加工质的相对挥发度也不能显著改善热泵的运行性能等结论。并进一步得出了增设分凝设施可显著增大工作温差的结论。  相似文献   

12.
中高温热泵混合工质ZHR02在油溶性、热物性、材料相容性、环保指标等方面的综合性能优越,为中高温热泵新型工质。文中设计了中高温热泵机组,选取ZHR02作为制冷剂进行了中高温热泵实验研究。研究表明,机组在名义工况下能够稳定生产70℃左右的热水,COP达4.3。  相似文献   

13.
为探究热泵供水温度对CO2空气源热泵系统性能的影响,保持室外环境温度15.5℃不变,调节热泵供水温度,测试冷却水流量、气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力、压缩机耗功量、系统制热量、气冷器热交换完善度、系统COP的变化情况。结果表明:供水温度由45℃升至85℃,气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力随之增加,冷却水流量随之减小。系统制热量增加了7.3%、气冷器热交换完善度下降了20.0%、系统COP下降了35%、压缩机功耗增加了65.1%。  相似文献   

14.
对CO2跨临界水-水热泵系统进行研究,并搭建实验台进行测试:系统中添加回热器与否的两种情况下,通过改变蒸发温度、冷冻水的流量和温度、冷却水的流量和温度,测试系统的制热系数COPh和制冷系数COP。结果表明,蒸发温度升高,系统的COPh、COP也随之增加;而冷冻水流量增加,系统的COPh、COP增加不明显;增加回热器后随着冷冻水温度升高,系统COPh和COP上升趋势显著;冷却水流量增加对系统性能的影响很大;随着冷却水温度的升高,系统的换热量降低,导致系统的COPh和COP随之降低。通过以上实验证明在相同的工况下,添加回热器可提高系统的性能。  相似文献   

15.
本文提出了一种供热温度为80~100℃的新型空气源高温热泵循环(EIHP),该循环采用非共沸混合工质R290/R600a,利用内部自复叠技术和喷射器提升循环性能。针对EIHP循环建立了相应的热力学计算模型,并与传统热泵循环(CHP)进行了对比研究。根据计算结果,当冷凝器出口温度为100℃,蒸发器出口温度从25℃下降到-10℃时,相较于CHP循环,EIHP循环的COP提高了15%~27%,压缩机压比降低了20%~46%,容积制热量提高了22%~51%。此外,本文还研究了冷凝器出口温度,工质配比等参数对循环性能的影响情况。  相似文献   

16.
对CO2循环中回热器的作用进行了热力学分析计算。计算结果表明,对于CO2热泵系统,回热循环制热系数和容积制热量的改善小于6%;对于CO2制冷系统,当冷凝温度低于40℃时,回热循环制冷系数和容积制冷量的改善小于10%,当冷凝温度介于40℃和70℃时,回热循环制冷系数和容积制冷量的改善10—20%。  相似文献   

17.
介绍了准二级涡旋压缩机空气源热泵系统,对研制出的具有蒸汽喷射的涡旋压缩机空气源热泵系统样机进行了大范围变工况试验研究,获得机组在各工况下的输入功率、制热量、COP、排气温度的变化。通过变工况实验,综合考虑制热量、COP和机组工作稳定性,得出准二级压缩热泵系统最佳中间补气压力为1200kPa~1400kPa。研究结果可为准二级压缩系统设计与应用提供参考。  相似文献   

18.
针对现有空气源热泵冷热水机组高温环境运行效果差、效率低、排气温度过高导致停机等问题,设计一套基于准双级压缩循环理论,以R410A为制冷剂的中压补气型空气源热泵冷热水机组。在50℃极端环境温度下,采用中压补气技术,对系统的制冷性能进行实验研究。结果表明:(1)系统出水温度由10℃增至15℃时,制冷量增加77.28%,EER提高59.02%,系统的制冷量、功率和EER均随出水温度的升高而增加;(2)相较不补气模式,系统排气温度由111.9℃降至106.23℃,制冷量由14.14 kW增至16.05 kW,可有效降低排气温度,提升制冷量,能更好提高系统超高温制冷时的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号