首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

2.
The overtone band 2ν08 of CH3CN around 720 cm−1 has been measured on a Bruker Fourier transform spectrometer at a resolution of 0.003 cm−1. Only the parallel band was observed, but due to the l(2, 2) resonance, ΔK = −2 lines leading to the v8 = 2, l8 = −2 levels with K = 1-3 could be seen. More information for the l8 = ±2 component of the vibrational state v8 = 2 was evaluated from the hot band 2ν±28 - ν±18. Altogether more than 1000 lines were assigned. In the fit pure rotational lines from literature were also combined. Among the results the anomalous A0 - A′ values 4.6722(13) × 10−3 cm−1 for the 2ν08 band and 7.0324(32) × 10−3 cm−1 for the 2ν±28 band are striking.  相似文献   

3.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

4.
Using a high-resolution Fourier transform spectrum of hydrogen selenide in natural abundance, about 600 intensities of lines belonging to the ν1, ν3, and 2ν2 bands of H280Se were measured. A least-squares fit of these intensities was performed, allowing determination of the vibrational transition moments of these bands and their rotational corrections. Finally, the first derivatives of the dipole moment with respect to the normal coordinates q1 and q3 were found to be ∂μχ/∂q1 = (−0.5938 ± 0.010) × 10−1 and ∂μz/∂q3 = (0.5683 ± 0.010) × 10−1 Debye, respectively.  相似文献   

5.
The infrared spectrum of allene has been recorded with high resolution (0.002-0.004 cm−1) on a Fourier transform instrument in the region 730 to 1170 cm−1 containing the perpendicular bands, ν9 and ν10. A total of 21 subbands with KΔK ranging from −6 to +14 have been assigned in the ν9 band, and 26 subbands with KΔK = −10 to +15 have been assigned in the ν10 band. The bands are affected by a combination of a Jz-Coriolis and a quartic anharmonic interaction between their upper states ν9 and ν10. In addition, several other more localized perturbations are found in the spectrum. The nature of the interactions responsible for these perturbations is discussed, and five of the strongest perturbations are quantitatively accounted for by constructing a Hamiltonian matrix which includes five different perturbing states and their Coriolis and anharmonic resonances with the ν9 and ν10 upper states. A set of spectroscopic constants for the ν9 and ν10 states and for some of the perturbing states is reported.  相似文献   

6.
The infrared spectrum of HC15NO an isotopically substituted species of fulminic acid, has been measured in the range 1900-3600 cm−1 at a resolution of 0.003 cm−1 with a Bruker IFS 120 HR interferometer. More than 100 subbands have been assigned. Power series coefficients for these transitions are given. A Coriolis resonance between the levels 01002 (l = 0e) and 01010 (l = 1e) allows normally "forbidden" transitions to occur, some of which were observed and assigned. We correlate transition intensities and energies of the resonance system. Variations in the manifold of nν5 states with excitation of other modes are compared.  相似文献   

7.
The Fourier transform infrared spectrum of monoisotopic SC80Se has been investigated in the ν2, ν3, 2ν2, 2ν3, and ν1 regions with a resolution between 3 and 4 × 10−3 cm−1. In addition, the millimeter-wave spectrum has been studied in the region 150 to 320 GHz, and ground and ν2 = 1 excited state transitions have been measured. Ground state constants, B0 = 2043.285 4(4) MHz and D0 = 146.53(5) Hz, have been determined from a merge of millimeter-wave data and ground state combination differences spanning J values up to 77 and 143, respectively. The band centers ν2 = 352.341 075(9) cm−1 and ν3 = 505.480 06(5)cm−1 have been determined. The rovibrational parameters of numerous overtone and combination levels (ν1νl22ν3) = 0200, 0220, 0310, 0330, 0400, 0420, 0002, and 0003 have been obtained from polynomial analyses whose standard deviations ranged from 0.7 to 3.5 × 10−4 cm−1. The 1000 level, νeff 1435.840 cm−1, is anharmonically perturbed by the 0400 level, with an avoided crossing at J = 55, and W12222 = 0.963 09(1) cm−1. Transitions to both the upper (E+) and lower (E) sublevels of the dyad were observed for 1 ≤ J′ ≤ 117 and 4 ≤ J′ ≤ 171, respectively, and the deperturbed wavenumbers ν1 = 1435.542 76(2) and 4ν02 = 1432.725 00(3) cm−1 were derived. Furthermore, a local crossing of the E and 0420 levels involving l-type resonance was observed at J = 91.  相似文献   

8.
The infrared (IR) spectrum of PD3 has been recorded in the 1580–1800 cm−1 range at a resolution of 0.0027 cm−1. About 2400 rovibrational transitions with J=K22 have been measured and assigned to the ν1 (A1) and ν3 (E) stretching fundamentals. These include 506 “perturbation-allowed” transitions with selection rules Δ(kl)=±3. Splittings of the K′′=3 lines have been observed. Effects of strong perturbations are evident in the spectrum. Therefore the rovibrational Hamiltonian adopted for the analysis explicitly takes into account the Coriolis and k-type interactions between the v1=1 and v3=1 states, and includes also several essential resonances within these states. The rotational structure in the v1=1 and v3=1 vibrational states up to J=K=18 was reproduced by fitting simultaneously all experimental data. Thirty-four parameters reproduced 1950 transitions retained in the final cycle with a standard deviation of the fit equal to 4.9 × 10−4 cm−1 (about the precision of the experimental measurements).  相似文献   

9.
High-resolution infrared spectra of the low-lying ν3, ν4, and ν5 fundamentals of the transient molecule DCOCl are reported. These type-A/B hybrid bands have been analyzed in detail, providing extensive rotational assignments for the DCO35Cl and DCO37Cl isotopomers. The ground state constants have been refined by a simultaneous fit of the available microwave data and FTIR combination differences from the three bands. The excited state constants have been determined by fitting assignments over a wide range of J and Ka values. A small perturbation was found at high Ka values in the ν4 band and determined to be due to a ΔKa = −2 interaction with the rotational levels of the 61 vibrational state.  相似文献   

10.
The rotational structure of the ν3 fundamental of 14N16O2 has been recorded by employing a vacuum grating infrared spectrograph. The analysis has led to the assignment of over 500 R- and P-branch transitions in the spectral region 1562–1650 cm−1. Molecular constants for the upper state, 001, have been presented. No Q-branch transitions were used in the evaluation of these constants. The presently obtained and the band center ν0 = 1616.846 cm−1 differ significantly from previous determinations. Spin splitting was observed but no information was extracted about upper state spin splitting parameters.  相似文献   

11.
The effective operator approach is applied to the calculation of both line positions and line intensities of the 13C16O2 molecule. About 11 000 observed line positions of 13C16O2 selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational–rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm−1. The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the ν2 and 3ν2 regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2ν1 + 5ν3 and ν1 + 2ν2 + 5ν3 absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm−1, and most of them lie within the experimental accuracy (0.007 cm−1) once the observed line positions are included in the global fit.  相似文献   

12.
The anisotropic and isotropic components of the ν2, ν5 rotation-vibrational Raman bands of 13CH3F were obtained separately. The two upper states are coupled by a strong second-order Coriolis resonance. The anisotropic spectrum was analyzed by means of a program system due to R. Escribano. A contour simulation and a least-squares fit of 233 assigned transitions yielded values for ν5, ΔA5, ΔA2, and Aζ5a, 5b(z). The 13C shifts of ν2 and ν5 were obtained from the isotropic spectrum.  相似文献   

13.
Using 0.002 cm−1 resolution Fourier transform absorption spectra of an 17O-enriched ozone sample, an extensive analysis of the ν3 band together with a partial identification of the ν1 band of the 17O16O17O isotopomer of ozone has been performed for the first time. As for other C2v-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3–16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers ν03) = 1030.0946 cm−1 and ν01) = 1086.7490 cm−1 were obtained for the ν3 and ν1 bands, respectively.  相似文献   

14.
A high-resolution Fourier transform spectrum of the ν9 band of CD3CCH has been recorded at an apodized resolution of 0.004 cm−1 and analyzed. More than 1700 lines in the spectrum have been assigned and the parameters of the ν9 state derived. The standard deviation of the fit was 0.00034 cm−1. In order to achieve this fit it was necessary to include l-type doubling interaction and Fermi resonance between ν9 and the E component of 2ν10.  相似文献   

15.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

16.
The Coriolis-coupled band system of ν5, ν2, and 2ν3 of CD3I was analyzed by making use of all of the experimental data now available. These data included the high-resolution infrared spectra, microwave spectra, and laser Stark spectra. The analysis gave values, more precise than before, of the spectroscopic constants for ν5, ν2, and 2ν3 and the interaction constants. The determination of the rotational constant A for 2ν3 gave a value for , with which all of the αA constants for CD3I have been completed. These αA values were incorporated with the known value of A6 to give a value for A0.  相似文献   

17.
The 2ν3 overtone (A1E) and the ν1 + ν3 (E) combination bands of the oblate symmetric top 14NF3 were studied by FTIR spectroscopy with a resolution of 2.5 × 10−3 cm−1. Nearly 500 lines up to Kmax/Jmax = 30/43 were observed for the weak A1 component reaching the v3 = 20 substate (1803.1302 cm−1), the majority of which corresponded to reinforced K = 3p-type transitions. For the strong E component reaching the v3 = 2±2 substate (1810.4239 cm−1), about 3550 transitions were assigned up to Kmax/Jmax = 65/69, favoring a clear observation of the ℓ(4, −2) and ℓ(4, 4) splittings within the kℓ = −2 and +4 sublevels, respectively. The two v3 = 2 substates are linked by the ℓ(2, 2)- and ℓ(2, −1)-type interactions, providing severe crossings, respectively, at K′ = 6 and near K′ = 24 on the v3 = 2+2 side. A model working in the D-reduction and including all these ℓ-type interactions could reproduce together 3695 nonzero weighted experimental data (NZW) through 33 free parameters with a standard deviation of σ = 0.357 × 10−3  cm−1. As for the ν1 + ν3 (E) combination band, about 3690 lines were assigned up to Kmax/Jmax = 45/55. Its v1 = v3 = 1 upper state (1931.577 5 cm−1) was treated using the same model recently applied to the v3 = 1 (E, 907.5413 cm−1) state. It yielded 21 free parameters through 3282 NZW experimental data, adjusted with σ = 0.344 × 10−3  cm−1 in the D-reduction. For the two excited states, the small and unobserved ℓ(0, 6) interaction was tested as useless. To confirm the adequacy of the vibrationally isolated models used, some other reductions of the Hamiltonian were tried. For the v3 = 2 state, the D-, L-, and LD-reductions led to similar σ’s, while the Q one was not successful. For the v1 = v3 = 1 state, the D- and Q-reductions gave comparable σ’s, while the QD-reduction was not as good. The corresponding unitary equivalence relations are generally more nicely fulfilled for the v3 = 2 state than for the v1 = v3 = 1 state. The three derivable anharmonicity constants in cm−1 are x33 = −4.1528, g33 = +1.8235 and x13 = −7.9652.  相似文献   

18.
High-resolution Fourier transform spectra covering the 720-920 cm−1 spectral region have been used to perform a reanalysis of the ν2 band ((010)-(000) vibrational transition) together with the first analysis of the 2ν2 - ν2 hot band of nitrogen dioxide ((020)-(010) vibrational transition). The high-quality spectra show that, for numerous ν2 lines, the hyperfine structure is easily observable in the case of resonances due to the hyperfine Fermi-type operator. By performing a full treatment of the spin-rotation and of the hyperfine operators, a new line list of the ν2 band (positions and intensities) has been generated, and it is in excellent agreement with the experimental spectrum. Also, a thorough analysis of the 2ν2 - ν2 hot band has been performed leading to an extended set of new (020) spin-rotation levels. These levels, together with the {(100), (020), (001)} spin-rotation levels deduced previously from the analysis of the ν1, 2ν2, and ν3 cold bands performed in the 6.3- to 7.5-μm spectral range [A. Perrin, J.-M. Flaud, C. Camy-Peyret. A.-M. Vasserot, G. Guelachvili, A. Goldman, F. J. Murcray, and R. D. Blatherwick, J. Mol. Spectrosc.154, 391-406 (1992)] were least-squares fitted, allowing one to derive a new set of vibrational band centers and rotational, spin-rotation, and interaction constants for the {(l00)(020)(001)} interacting states of 14N 16O2.  相似文献   

19.
The gas-phase infrared spectrum of CH3CD3 in the region of the perpendicular C---H stretching band, ν7, near 3000 cm−1 has been studied under a spectral resolution of 0.025 cm−1, increased to 0.015 cm−1 by deconvolution. An assignment of lines in the subbands KΔK = +15 to −3 is proposed, and their upper-state constants are reported. The interpretation of the effective rotational constants of the individual subbands is complicated by a strong perturbation.  相似文献   

20.
The high resolution spectrum of the ν1 + ν2 + ν3 band of O3 in the 2800-cm−1 region has been analyzed using Watson's Hamiltonian. The resulting Hamiltonian constants and previously published line intensities have been used to generate a listing of line assignments, positions, absolute intensities, and ground state energies. These should be useful for atmospheric studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号