首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of low-dimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transport properties of these carbon nanomaterials are reviewed. Although these systems share the similar graphene electronic structure, confinement effects are playing a crucial role. Indeed, the lateral confinement of charge carriers could create an energy gap near the charge neutrality point, depending on the width of the ribbon, the nanotube diameter, the stacking of the carbon layers regarding the different crystallographic orientations involved. After reviewing the transport properties of defect-free systems, doping and topological defects (including edge disorder) are also proposed as tools to taylor the quantum conductance in these materials. Their unusual electronic and transport properties promote these carbon nanomaterials as promising candidates for new building blocks in a future carbon-based nanoelectronics, thus opening alternatives to present silicon-based electronics devices.  相似文献   

2.
陈晓彬  段文晖 《物理学报》2015,64(18):186302-186302
低维材料不断涌现的新奇性质吸引着科学研究者的目光. 除了电子的量子输运行为之外, 人们也陆续发现和确认了热输运中显著的量子行为, 如 热导低温量子化、声子子带、尺寸效应、瓶颈效应等. 这些小尺度体系的热输运性质可以很好地用非平衡格林函数来描述. 本文首先介绍了量子热输运的特性、声子非平衡格林函数方法及其在低维纳米材料中的研究进展; 其次回顾了近年来在 一系列低维材料中发现的热-自旋输运现象. 这些自旋热学现象展现了全新的热电转换机制, 有助于设计新型的热电转换器件, 同时也给出了用热产生自旋流的新途径; 最后介绍了线性响应理论以及在此理论框架下结合声子、电子非平衡格林函数方法进行的一些有益的探索. 量子热输运的研究对热效应基础研究以及声子学器件、能量转换器件的发展有着不可替代的重要作用.  相似文献   

3.
Yi-Fan Zhang 《中国物理 B》2022,31(12):125201-125201
Linear carbon chains as new one-dimensional (1D) nanomaterials attract attention for the predicted outstanding properties. However, the high reactivity of linear carbon chains hampers further experimental research. To date, different methods have been developed to synthesize new materials containing linear carbon chains. Among them, the arc-discharge method is a practical way to prepare both finite and infinite linear carbon chains. This review provides a brief discussion of the recent progress in the techniques to prepare carbon chain-based materials and then focuses on the arc-discharge method. The configuration of apparatus, optimal conditions, and the corresponding mechanism of arc-discharge method to prepare long linear carbon chain inside multi-walled carbon nanotubes are summarized in detail. The characterization techniques are introduced to evaluate the quality of products. Moreover, remaining challenges and perspectives are presented for further investigation of long linear carbon chains.  相似文献   

4.
Two simple methods, the thermal evaporation method and solution method, were developed to synthesize a variety of SiC nanoarchitectures. SiC nanowires, nanopyramids, and nanobones were obtained by the thermal evaporation method, while nanokelps, nanoflowers and nanocombs were achieved in the solution route. X-ray diffraction (XRD) analyses demonstrate that these SiC nanoarchitectures all have a face-centered cubic structure. The variety of the SiC nanoarchitectures is recognized caused by using different carbon and silicon sources with and without nucleation initiators, e.g., ZnS and Zn/SiO2 in the thermal evaporation method, and different growth manners in the solution method. The vapor–solid (VS) and vapor–liquid–solid (VLS) reaction mechanisms are proposed for the formation of these different morphologies and structures of the SiC nanoarchitectures. The study on the nanoarchitectures may be helpful in the further research towards controllable formation of nanostructures and in finding potential applications for nanodevices. PACS 42.70.Nq; 68.37.-d; 78.67.Bf; 81.07.Vb; 81.15.Gh  相似文献   

5.
李柱松  朱泰山 《物理学报》2016,65(11):116802-116802
层状材料和超晶格结构为提高热电材料和隔热涂层提供了新的设计思路, 并成为最近的研究热点. 应用连续波动方程和线性阻尼理论, 本文研究了此类材料中的声子输运特性. 给出了在整个相空间里的界面调制和声子局域化效应, 得出了超晶格材料热导率的上极限和下极限; 同时, 分析表明界面锐化加强了声子带隙, 使得部分模态的声子局域化加强. 最后, 通过对石墨烯/氮化硼超晶格(G/hBN)和硅/锗超晶格的分子模拟(Si/Ge), 验证了该理论模型. 该方法适用于所有的层状材料和超晶格结构, 对此类新能源材料的设计提供了普适的设计思路.  相似文献   

6.
The recently discovered two-dimensional(2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this article, we review the recent advances in numerical studies of the thermal properties of monolayer phosphorene and phosphorene-based heterostructures. We first briefly review the commonly used first-principles and molecular dynamics(MD) approaches to evaluate the thermal conductivity and interfacial thermal resistance of 2D phosphorene. Principles of different steady-state and transient MD techniques have been elaborated on in detail. Next, we discuss the anisotropic thermal transport of phosphorene in zigzag and armchair chiral directions. Subsequently, the in-plane and cross-plane thermal transport in phosphorene-based heterostructures such as phosphorene/silicon and phosphorene/graphene is summarized. Finally, the numerical research in the field of thermal transport in 2D phosphorene is highlighted along with our perspective of potentials and opportunities of 2D phosphorenes in electronic applications such as photodetectors, field-effect transistors, lithium ion batteries, sodium ion batteries, and thermoelectric devices.  相似文献   

7.
The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review.  相似文献   

8.
The anomalous thermal transport properties of nanotubes may lead to many important applications, but the mechanisms are still unclear. In this work, we present new governing equations for non-Fourier heat conduction in nanomaterials based on the concept of thermomass. The effective thermal conductivities of nanotubes are therefore predicted which agree very well with the available experimental data. Analysis suggests that the inertial effect of heat and the confined heat flux by nanostructured surfaces are two key mechanisms causing the anomalous temperature and size dependences of effective thermal conductivity of nanotubes.  相似文献   

9.
10.
Chemical functionalization of atomically thin nanostructures presents a promising strategy to create new hybrid nanomaterials with remarkable and externally controllable properties. Here, we review our research in the field of theoretical modeling of carbon nanotubes, graphene, and transition metal dichalcogenides located in molecular dipole fields. In particular, we provide a microscopic view on the change of the optical response of these technologically promising nanomaterials due to the presence of photo‐active spiropyran molecules. The feature article presents a review of recent theoretical work providing microscopic view on the optical response of chemically functionalized carbon nanotubes, graphene, and monolayered transition metal dichalcogenides. In particular, we propose a novel sensor mechanism based on the molecule‐induced activation of dark excitons. This results in a pronounced additional peak presenting an unambiguous optical fingerprint for the attached molecules.  相似文献   

11.
We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible.  相似文献   

12.
Synthesis of aligned carbon nanotubes   总被引:3,自引:0,他引:3  
Carbon nanomaterials seem to be most attractive because of their fascinating features. Carbon nanotubes emerged recently as unique nanostructures with remarkable mechanical and electronic properties. Future applications will require a fabrication method capable of producing uniform carbon nanotubes with well-defined and controllable reproducibility of their properties. In this review, recent results addressing rational and efficient methods to obtain aligned arrays of these one-dimensional carbon nanomaterials will be discussed. Received: 3 November 2000 / Accepted: 30 May 2001 / Published online: 30 August 2001  相似文献   

13.
Ferric oxide (Fe2O3) complex nanoarchitectures with high BET specific surface area, superior photocatalytic activity and modulated magnetic properties are facilely synthesized via controlled thermal decomposition of iron(III) nitrate nonahydrate. The products are characterized by X-ray diffraction, Fourier-transforming infrared spectra, field-emission scanning electron microscope, field-emission high-resolution transmission electron microscope, and nitrogen physisorption and micrometrics analyzer. The corresponding photocatalytic activity and static magnetic properties are also evaluated by measuring the photocatalytic degradation of Rhodamine B aqueous solution under visible light illumination and vibrating sample magnetometer, respectively. Simply tuning the decomposition temperature can conveniently modulate the adsorbing/desorbing behaviors of the in situ generated gases on the nucleus surfaces, and consequently the crystalline structures and morphologies of the Fe2O3 complex nanoarchitectures. The as-prepared Fe2O3 complex nanoarchitectures show strong crystal structure and/or morphology-dependent photocatalytic and magnetic performances. The Fe2O3 complex nanoarchitectures with high specific surface area and favorable crystallization are found to be beneficial for improving the photocatalytic activity. This work not only reports a convenient and low-cost decomposition procedure and a novel formation mechanism of complex nanoarchitectures but also provides an efficient route to enhance catalytic and magnetic properties of Fe2O3.  相似文献   

14.
In recent years, two-dimensional boron sheets(borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first give a general survey of some notable electronic properties of borophene, including the superconductivity and topological characters. We then mainly review the basic approaches, thermal transport, as well as the mechanical properties of borophene with different configurations. This review gives a general understanding of some of the crucial thermal transport and electronic properties of borophene, and also calls for further experimental investigations and applications on certain scientific community.  相似文献   

15.
采用无催化脉冲激光沉积(PLD)方法,在InP(100)衬底上生长纳米ZnO柱状结构。采用扫描电子显微镜(SEM)、X射线衍射(XRD)以及光致发光(PL)谱等表征手段对ZnO纳米柱的形貌、晶体结构和光学特性进行了观察。SEM图像观察到ZnO纳米柱状结构具有一定的取向性;XRD测试在2θ=34.10°处观测到强的ZnO(002)衍射峰,证实ZnO纳米柱具有较好的c轴择优取向;室温PL谱在379nm处观察到了强的自由激子发射峰(半峰全宽为19nm),未探测到深能级跃迁发射峰,表明生长的纳米ZnO结构具有很高的光学质量。  相似文献   

16.
17.
The influence of size and dimension on the volume plasmon energy of nanomaterials is examined, and the effect of band-gap variation and lattice contraction is explicitly included in our improvised phenomenological model. The advantage of this improvised model is the ability to predict the volume plasmon energy for low dimensional materials, literally free from any arbitrarily adjustable parameters. We find that the volume plasmon energy increases almost exponentially with decreasing size and this increase is shown to be the most evident for nanoparticles, as compared to nanowires and nanofilms of the same material. This is largely due to the variation in the surface/volume ratio with dimension modulation. More importantly, our improvised model outperforms other reported ones, bringing our predicted results closest to available experiments. In particular, for semiconducting/semi-metal nanoarchitectures, we demonstrate that the rapid increase in volume plasmon energy of nanomaterials is a direct consequence and interplay of band-gap variation and lattice contraction.  相似文献   

18.
A new type of one-dimensional (1D) carbon structure, carbon nanowires (CNWs), was discovered in the cathode deposits prepared by hydrogen arc discharge evaporation of carbon rods. Observation of high-resolution transmission electron microscopy (HRTEM) indicates that a CNW consists of a multiwalled carbon nanotube (MWNT) with a long 1D linear carbon chain (C chain) inserted into its innermost tube of 0.7 nm in diameter. The characteristic Raman peaks of CNWs appeared at around 1850 cm(-1). Raman scattering and HRTEM studies show the formation of a long linear C chain involving more than 100 carbon atoms inside a MWNT. This novel 1D carbon allotrope has potential applications in nanoelectronics, nanomechanics, and nanomaterials.  相似文献   

19.
We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons. This improvement can reach 37.5% in the low temperature region. The pressure dependence of thermal conductivity is also investigated for different length, width and thickness of few-layer graphene. Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons. Furthermore, it maybe indicate a so-called pressure-thermal effect in nanomaterials.  相似文献   

20.
何学敏  钟伟  都有为 《物理学报》2018,67(22):227501-227501
具有核/壳结构的磁性复合纳米材料是十分重要的功能材料,其综合物性受材料微结构的影响,而这很大程度上又取决于复合体系的可控合成.本文综述了近二十年来有关核/壳磁性复合纳米材料的制备、表征及性能研究方面的进展,讨论的体系主要有:铁氧体基永磁/软磁(反铁磁)复合纳米材料、非磁性体包覆磁性核而成的复合纳米材料、用磁性颗粒催化合成的碳基复合纳米材料、基于交换偏置效应而设计的复合纳米材料、核-壳同轴结构的一维复合纳米材料和核/壳/壳三元结构的磁性复合纳米材料等.构建复合体系的组分包括M型永磁铁氧体、3d过渡金属(及其合金、氧化物、碳化物)、多铁化合物、非磁性体(比如绝缘体、半导体、有机分子)和碳材料等,着重分析了复合纳米材料的热稳定性、光致发光性能、光电催化能力、电化学特性、微波吸收性能、磁电阻效应、永磁体性能、高频软磁特性、交换偏置效应及其相关现象.最后,对核/壳结构磁性复合纳米材料的未来发展趋势进行了展望,并在基础研究和改性应用方面提出了一些建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号