首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uncertainty principle is a crucial aspect of quantum mechanics.It has been shown that quantum entanglement as well as more general notions of correlations,such as quantum discord,can relax or tighten the entropic uncertainty relation in the presence of an ancillary system.We explored the behaviour of entropic uncertainty relations for system of two qubits—one of which subjects to several forms of independent quantum noise,in both Markovian and non-Markovian regimes.The uncertainties and their lower bounds,identified by the entropic uncertainty relations,increase under independent local unital Markovian noisy channels,but they may decrease under non-unital channels.The behaviour of the uncertainties(and lower bounds)exhibit periodical oscillations due to correlation dynamics under independent non-Markovian reservoirs.In addition,we compare different entropic uncertainty relations in several special cases and find that discord-tightened entropic uncertainty relations offer in general a better estimate of the uncertainties in play.  相似文献   

2.
Quantum coherence measures the correlation between different measurement results in a single-system, while entanglement and quantum discord measure the correlation among different subsystems in a multipartite system. In this paper, we focus on the relative entropy form of them, and obtain three new properties of them as follows: 1) General forms of maximally coherent states for the relative entropy coherence, 2) Linear monogamy of the relative entropy entanglement, and 3) Subadditivity of quantum discord. Here, the linear monogamy is defined as there is a small constant as the upper bound on the sum of the relative entropy entanglement in subsystems.  相似文献   

3.
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.  相似文献   

4.
We prove two new fundamental uncertainty relations with quantum memory for the Wehrl entropy. The first relation applies to the bipartite memory scenario. It determines the minimum conditional Wehrl entropy among all the quantum states with a given conditional von Neumann entropy and proves that this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The second relation applies to the tripartite memory scenario. It determines the minimum of the sum of the Wehrl entropy of a quantum state conditioned on the first memory quantum system with the Wehrl entropy of the same state conditioned on the second memory quantum system and proves that also this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The Wehrl entropy of a quantum state is the Shannon differential entropy of the outcome of a heterodyne measurement performed on the state. The heterodyne measurement is one of the main measurements in quantum optics and lies at the basis of one of the most promising protocols for quantum key distribution. These fundamental entropic uncertainty relations will be a valuable tool in quantum information and will, for example, find application in security proofs of quantum key distribution protocols in the asymptotic regime and in entanglement witnessing in quantum optics.  相似文献   

5.
邹艳  李永平 《中国物理 B》2009,18(7):2794-2800
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy. The results obtained from numerical calculation indicate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field, the atomic motion and the field-mode structure. The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields. Moreover, there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.  相似文献   

6.
Quantum dots comprise a type of quantum impurity system. The entanglement and coherence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-motion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.  相似文献   

7.
We devise a protocol in which general nonclassical multipartite correlations produce a physically relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative entropy of quantumness, which measures all nonclassical correlations among subsystems of a quantum system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement generated between the system and local ancillae in our protocol. We emphasize the key role of state mixedness in maximizing nonclassicality: Mixed entangled states can be arbitrarily more nonclassical than separable and pure entangled states.  相似文献   

8.
Ying-Yue Yang 《中国物理 B》2022,31(10):100303-100303
We explore the dynamical behaviors of the measurement uncertainty and quantum correlation for a vertical quantum-dot system in the presence of magnetic field, including electron-electron interaction and Coulomb-blocked systems. Stemming from the quantum-memory-assisted entropic uncertainty relation, the uncertainty of interest is associated with temperature and parameters related to the magnetic field. Interestingly, the temperature has two kinds of influences on the variation of measurement uncertainty with respect to the magnetic-field-related parameters. We also discuss the relation between the lower bound of Berta et al. and the quantum discord. It is found that there is a natural competition between the quantum discord and the entropy minΠiBSΠiB(ρA|B). Finally, we bring in two improved bounds to offer a more precise limit to the entropic uncertainty.  相似文献   

9.
A.-S.F. Obada 《Physica A》2008,387(12):3065-3071
We construct a complete representation of the atomic information entropy of an arbitrary multi-level system. Our approach is applicable to all scenarios in which the quantum state shared by a single particle and fields is known. As illustrations we apply our findings to a single four-level atom strongly coupled to a cavity field and driven by a coherent laser field. In this framework, we discuss connections with entanglement frustration and entropic forms. We conclude by showing how the atomic information entropy can be extended to examine entanglement in multi-level atomic systems.  相似文献   

10.
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2)K Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.  相似文献   

11.
No Heading We derive two complementarity relations that constrain the individual and bipartite properties that may simultaneously exist in a multi-qubit system. The first expression, valid for an arbitrary pure state of n qubits, demonstrates that the degree to which single particle properties are possessed by an individual member of the system is limited by the bipartite entanglement that exists between that qubit and the remainder of the system. This result implies that the phenomenon of entanglement sharing is one specific consequence of complementarity. The second expression, which holds for an arbitrary state of two qubits, pure or mixed, quantifies a tradeoff between the amounts of entanglement, separable uncertainty, and single particle properties that are encoded in the quantum state. The separable uncertainty is a natural measure of our ignorance about the properties possessed by individual subsystems, and may be used to completely characterize the relationship between entanglement and mixedness in two-qubit systems. The two-qubit complementarity relation yields a useful geometric picture in which the root mean square values of local subsystem properties act like coordinates in the space of density matrices, and suggests possible insights into the problem of interpreting quantum mechanics.  相似文献   

12.
We investigate the scaling of the entanglement entropy in an infinite translational invariant fermionic system of any spatial dimension. The states under consideration are ground states and excitations of tight-binding Hamiltonians with arbitrary interactions. We show that the entropy of a finite region typically scales with the area of the surface times a logarithmic correction. Thus, in contrast with analogous bosonic systems, the entropic area law is violated for fermions. The relation between the entanglement entropy and the structure of the Fermi surface is discussed, and it is proven that the presented scaling law holds whenever the Fermi surface is finite. This is, in particular, true for all ground states of Hamiltonians with finite range interactions.  相似文献   

13.
For a given pure state of a composite quantum system we analyze the product of its projections onto a set of locally orthogonal separable pure states. We derive a bound for this product analogous to the entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states and it allows us to construct a family of entanglement measures, we shall call collectibility. As these quantities are experimentally accessible, the approach advocated contributes to the task of experimental quantification of quantum entanglement, while for a three-qubit system it is capable to identify the genuine three-party entanglement.  相似文献   

14.
The uncertainty principle is a crucial aspect of quantum mechanics.It has been shown that the uncertainty principle can be tightened by quantum discord and classical correlation in the presence of quantum memory.We investigate the control of the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environment.Our results show that the entropic uncertainty of an observed system can be reduced and the quantum discord between the observed system and the quantum memory system can be enhanced in the steady state of the system by adding an dissipative ancilla.Particularly,via preparing the state of the system to the highest excited state with hight fidelity,the entropic uncertainty can be reduced markedly and the quantum discord can be enhanced obviously.We explain these results using the definition of state fidelity.Furthermore,we present an effective strategy to further reduce the the entropic uncertainty and to enhance the the quantum discord via quantum-jump-based feedback control.Therefore,our results may be of importance in the context of quantum information technologies.  相似文献   

15.
The exponential speedup achieved in certain quantum algorithms based on mixed states with negligible entanglement has renewed the interest on alternative measures of quantum correlations. Here we discuss a general measure of quantum correlations for composite systems based on generalized entropic functions, defined as the minimum information loss due to a local measurement. For pure states, the present measure becomes an entanglement entropy, i.e., it reduces to the generalized entropy of the reduced state. However, for mixed states it can be nonzero in separable states, vanishing just for states diagonal in a general product basis, like the quantum discord. Quadratic measures of quantum correlations can be derived as particular cases of the present formalism. The minimum information loss due to a joint local measurement is also considered. The evaluation of these measures in a simple yet relevant case is also discussed.  相似文献   

16.
The dynamics of quantum‐memory‐assisted entropic uncertainty for the closed neutrino system in the context of two flavor oscillations and the meson system within the framework of open quantum system are investigated. It is found that the entropic uncertainty exists in close relation with the quantum correlation, and growing quantum correlation can decrease the uncertainty. The oscillatory behaviors of entropic uncertainty in neutrino system brought about by neutrino oscillating property are different from the decaying behaviors of entropic uncertainty in meson system induced by the meson decaying nature. In addition, the entropic uncertainty is always equal to its lower bound in the two subatomic systems. This study would throw light on the particle behavior characteristics of high energy physics, and may be useful to the tasks of quantum information‐processing implemented with subatomic system since the uncertainty principle plays vital role in quantum information science and technology.  相似文献   

17.
The time evolution of the field quantum entropy and entanglement in a system of multi-mode coherent light field resonantly interacting with a two-level atom by degenerating the multi-photon process is studied by utilizing the Von Neumann reduced entropy theory, and the analytical expressions of the quantum entropy of the multimode field and the numerical calculation results for three-mode field interacting with the atom are obtained. Our attention focuses on the discussion of the influences of the initial average photon number, the atomic distribution angle and the phase angle of the atom dipole on the evolution of the quantum field entropy and entanglement. The results obtained from the numerical calculation indicate that: the stronger the quantum field is, the weaker the entanglement between the quantum field and the atom will be, and when the field is strong enough, the two subsystems may be in a disentangled state all the time; the quantum field entropy is strongly dependent on the atomic distribution angle, namely, the quantum field and the two-level atom are always in the entangled state, and are nearly stable at maximum entanglement after a short time of vibration; the larger the atomic distribution angle is, the shorter the time for the field quantum entropy to evolve its maximum value is; the phase angles of the atom dipole almost have no influences on the entanglement between the quantum field and the two-level atom. Entangled states or pure states based on these properties of the field quantum entropy can be prepared.  相似文献   

18.
We investigate the fundamental connection between quadrature squeezing and continuous variable entanglement within a general class of two-coupled oscillator systems. We determine the quantitative relationship between them through the squeezing parameter and the entanglement entropy of the lowest energy eigenstate of the coupled oscillator systems numerically. Unlike the relation between entanglement and uncertainty product, we found that this relationship is, by no means, the same for the whole class of coupled oscillator systems: to a large extent it depends on the order and strength of the anharmonic potential, which implies that knowledge of the anharmonic potential of the coupled oscillator system is required before one can characterize the degree of entanglement through the squeezing parameter. Our results reveal that a more effective approach to enhance squeezing is to adjust the anharmonicity of the system potential, instead of increasing the quantum correlations between the oscillators. In addition, by probing into a quantum catastrophe model, we uncover transitions in the entanglement entropy and squeezing relation as the potential changes from a single well to a triple well, and then a double-well structure. The transitions appear through distinct entropy–squeezing relation, with a multi-well structure displaying a larger change in the antisqueezing behavior of the position quadrature than the single-well structure, for the same change in the entanglement entropy.  相似文献   

19.
20.
郭红 《物理学报》2015,64(22):220301-220301
量子关联是量子信息、量子计算与量子计量领域的重要资源, 在量子纠缠和贝尔非局域性中, 两子系统起着同等关键的作用, Einstein-Podolsky-Rosen (EPR)量子引导关联的强度介于量子纠缠和贝尔非局域性之间, 对单向EPR量子引导关联而言两子系统的作用不对等. 本文研究了双模Bose-Hubbard模型中模间量子关联的动态特性, 揭示了EPR量子引导关联的取向对系统初态模间交换对称性的依赖关系. 根据Hillery-Zubairy纠缠判据以及基于最大平均量子Fisher信息的纠缠判据考察了系统初态对模间量子纠缠演化规律的影响. 如果模间耦合强度远大于同一势阱内粒子间的相互作用, 初始处于SU(2)相干态的系统在具有确定的两子系统交换对称性的条件下, 其量子关联呈现简单的周期性演化规律; 当这种对称性破缺时, 模间量子关联的演化呈现较复杂的崩塌与回复现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号