首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jun Li  Yong Chen 《理论物理通讯》2020,72(11):115003-29
It has still been difficult to solve nonlinear evolution equations analytically. In this paper, we present a deep learning method for recovering the intrinsic nonlinear dynamics from spatiotemporal data directly. Specifically, the model uses a deep neural network constrained with given governing equations to try to learn all optimal parameters. In particular, numerical experiments on several third-order nonlinear evolution equations, including the Korteweg–de Vries (KdV) equation, modified KdV equation, KdV–Burgers equation and Sharma–Tasso–Olver equation, demonstrate that the presented method is able to uncover the solitons and their interaction behaviors fairly well.  相似文献   

2.
Jun Li  Yong Chen 《理论物理通讯》2020,72(10):105005-52
Solving nonlinear evolution partial differential equations has been a longstanding computational challenge. In this paper, we present a universal paradigm of learning the system and extracting patterns from data generated from experiments. Specifically, this framework approximates the latent solution with a deep neural network, which is trained with the constraint of underlying physical laws usually expressed by some equations. In particular, we test the effectiveness of the approach for the Burgers' equation used as an example of second-order nonlinear evolution equations under different initial and boundary conditions. The results also indicate that for soliton solutions, the model training costs significantly less time than other initial conditions.  相似文献   

3.
《中国物理 B》2021,30(6):60202-060202
The nonlinear Schro¨dinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schro¨dinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schro¨dinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.  相似文献   

4.
In this paper, based on physics-informed neural networks (PINNs), a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations (PDEs) and other types of nonlinear physical models, we study the nonlinear Schrödinger equation (NLSE) with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential, which is an important physical model in many fields of nonlinear physics. Firstly, we choose three different initial values and the same Dirichlet boundary conditions to solve the NLSE with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential via the PINN deep learning method, and the obtained results are compared with those derived by the traditional numerical methods. Then, we investigate the effects of two factors (optimization steps and activation functions) on the performance of the PINN deep learning method in the NLSE with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential. Ultimately, the data-driven coefficient discovery of the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential or the dispersion and nonlinear items of the NLSE with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential can be approximately ascertained by using the PINN deep learning method. Our results may be meaningful for further investigation of the nonlinear Schrödinger equation with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential in the deep learning.  相似文献   

5.
We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higher-order nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons.  相似文献   

6.
研究杂质在等离子体中的扩散(非定态)时,提出了求解二阶非线性抛物型偏微分方程组的问题。对于这类方程组的数值求解,不少人进行过研究,但是在理论上至今还不够完善。仅就常用的差分方法而言,对于具体问题仍有采用哪种差分格式、如何线性化以及如何迭代等问题。这些问题的解决带有一定的经验性质。  相似文献   

7.
In this article, a variety of solitary wave solutions are found for some nonlinear equations. In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into the corresponding partial differential equation and the rational exp (?φ(η))-expansion method is implemented to find exact solutions of nonlinear equation. We find hyperbolic, trigonometric, rational and exponential function solutions using the above equation. The results of various studies show that the suggested method is very effective and can be used as an alternative for finding exact solutions of nonlinear equations in mathematical physics. A comparative study with the other methods gives validity to the technique and shows that the method provides additional solutions. Graphical representations along with the numerical data reinforce the efficacy of the procedure used. The specified idea is very effective, pragmatic for partial differential equations of fractional order and could be protracted to other physical phenomena.  相似文献   

8.
胡健伟  田春松 《计算物理》1989,6(2):159-168
本文给出一个深层地下不稳定流温度场的数学模型,它把三维空间中的两个耦合的传导(对流)问題,归化为一个传导对流型的积微分方程。为节约数值求解时的计算量和存贮量,文中还特别讨论了后者在时间方向上的离散格式,并给出了数值例子。  相似文献   

9.
胡亮  罗懋康 《物理学报》2017,66(13):130302-130302
柱面电磁波在各种非均匀非线性介质中的传播问题具有非常重要的研究价值.对描述该问题的柱面非线性麦克斯韦方程组进行精确求解,则是最近几年新兴的研究热点.但由于非线性偏微分方程组的极端复杂性,针对任意初边值条件的精确求解在客观上具有极高的难度,已有工作仅解决了柱面电磁波在指数非线性因子的非色散介质中的传播情况.因此,针对更为确定的物理场景,寻求能够精确描述其中更为广泛的物理性质的解,是一种更为有效的处理方法.本文讨论了具有任意非线性因子与幂律非均匀因子的非色散介质中柱面麦克斯韦方程组的行波精确解,理论分析表明这种情况下柱面电磁波的电场分量E已不存在通常形如E=g(r-kt)的平面行波解;继而通过适当的变量替换与求解相应的非线性常微分方程,给出电场分量E=g(lnr-kt)形式的广义行波解,并以例子展示所得到的解中蕴含的类似于自陡效应的物理现象.  相似文献   

10.
In this paper, we investigate the numerical performance of a family of P-stable two-step Maruyama schemes in mean-square sense for stochastic differential equations with time delay proposed in [8, 10] for a certain class of nonlinear stochastic delay differential equations with multiplicative white noises. We also test the convergence of one of the schemes for a time-delayed Burgers' equation with an additive white noise. Numerical results show that this family of two-step Maruyama methods exhibit similar stability for nonlinear equations as that for linear equations.  相似文献   

11.
张荣培 《中国物理 B》2012,21(4):40205-040205
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear Schro¨dinger (NLS) equation and the complex Ginzburg–Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.  相似文献   

12.
While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kermels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional counterparts exist.In this paper,we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach.Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view.Consequently,rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors.The existence and uniqueness of the numerical solution are established.Numerical experiments are provided to support the theoretical convergence analysis.The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.  相似文献   

13.
In this paper, we investigate the mean-square convergence of the split-step θ-scheme for nonlinear stochastic differential equations with jumps. Under some standard assumptions, we rigorously prove that the strong rate of convergence of the split-step θ-scheme in strong sense is one half. Some numerical experiments are carried out to assert our theoretical result.  相似文献   

14.
In this paper, we study the higher dimensional nonlinear Rossby waves under the generalized beta effect. Using methods of the multiple scales and weak nonlinear perturbation expansions [Q. S. Liu, et al., Phys. Lett. A 383 (2019) 514], we derive a new $(2+1)$-dimensional generalized Boussinesq equation from the barotropic potential vorticity equation. Based on bifurcation theory of planar dynamical systems and the qualitative theory of ordinary differential equations, the dynamical analysis and exact traveling wave solutions of the new generalized Boussinesq equation are obtained. Moreover, we provide the numerical simulations of these exact solutions under some conditions of all parameters. The numerical results show that these traveling wave solutions are all the Rossby solitary waves.  相似文献   

15.
In a secret communication system using chaotic synchronization, the communication information is embedded in a signal that behaves as chaos and is sent to the receiver to retrieve the information. In a previous study, a chaotic synchronous system was developed by integrating the wave equation with the van der Pol boundary condition, of which the number of the parameters are only three, which is not enough for security. In this study, we replace the nonlinear boundary condition with an artificial neural network, thereby making the transmitted information difficult to leak. The neural network is divided into two parts; the first half is used as the left boundary condition of the wave equation and the second half is used as that on the right boundary, thus replacing the original nonlinear boundary condition. We also show the results for both monochrome and color images and evaluate the security performance. In particular, it is shown that the encrypted images are almost identical regardless of the input images. The learning performance of the neural network is also investigated. The calculated Lyapunov exponent shows that the learned neural network causes some chaotic vibration effect. The information in the original image is completely invisible when viewed through the image obtained after being concealed by the proposed system. Some security tests are also performed. The proposed method is designed in such a way that the transmitted images are encrypted into almost identical images of waves, thereby preventing the retrieval of information from the original image. The numerical results show that the encrypted images are certainly almost identical, which supports the security of the proposed method. Some security tests are also performed. The proposed method is designed in such a way that the transmitted images are encrypted into almost identical images of waves, thereby preventing the retrieval of information from the original image. The numerical results show that the encrypted images are certainly almost identical, which supports the security of the proposed method.  相似文献   

16.
In the present study, we consider the q-homotopy analysis transform method to find the solution for modified Camassa-Holm and Degasperis-Procesi equations using the Caputo fractional operator. Both the considered equations are nonlinear and exemplify shallow water behaviour. We present the solution procedure for the fractional operator and the projected solution procedure gives a rapidly convergent series solution. The solution behaviour is demonstrated as compared with the exact solution and the response is plotted in 2D plots for a diverse fractional-order achieved by the Caputo derivative to show the importance of incorporating the generalised concept. The accuracy of the considered method is illustrated with available results in the numerical simulation. The convergence providence of the achieved solution is established in $\hslash $-curves for a distinct arbitrary order. Moreover, some simulations and the important nature of the considered model, with the help of obtained results, shows the efficiency of the considered fractional operator and algorithm, while examining the nonlinear equations describing real-world problems.  相似文献   

17.
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These nonlocal models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but also those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.  相似文献   

18.
In this paper we study neural field models with delays which define a useful framework for modeling macroscopic parts of the cortex involving several populations of neurons. Nonlinear delayed integro-differential equations describe the spatio-temporal behavior of these fields. Using methods from the theory of delay differential equations, we show the existence and uniqueness of a solution of these equations. A Lyapunov analysis gives us sufficient conditions for the solutions to be asymptotically stable. We also present a fairly detailed study of the numerical computation of these solutions. This is, to our knowledge, the first time that a serious analysis of the problem of the existence and uniqueness of a solution of these equations has been performed. Another original contribution of ours is the definition of a Lyapunov functional and the result of stability it implies. We illustrate our numerical schemes on a variety of examples that are relevant to modeling in neuroscience.  相似文献   

19.
We consider a modified Noguchi network and study the impact of the nonlinear quadratic dispersion on the dynamics of modulated waves. In the semi-discrete limit, we show that the dynamics of these waves are governed by a nonlinear cubic Schrodinger equation. From the graphical analysis of the coefficients of this equation, it appears that the nonlinear quadratic dispersion counterbalances the effects of the linear dispersion in the frequency domain. Moreover, we establish that this nonlinear quadratic dispersion provokes the disappearance of some regions of modulational instability in the dispersion curve compared to the results earlier obtained by Pelap et al.(Phys. Rev. E 91 022925(2015)). We also find that the nonlinear quadratic dispersion limit considerably affects the nature, stability, and characteristics of the waves which propagate through the system. Furthermore, the results of the numerical simulations performed on the exact equations describing the network are found to be in good agreement with the analytical predictions.  相似文献   

20.
We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean–Vlasov–Fokker–Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh–Nagumo model neurons, which are often used to approximate Hodgkin–Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号