首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlocal nonlinear Gerdjikov-Ivanov (GI) equation is one of the most important integrable equations, which can be reduced from the third generic deformation of the derivative nonlinear Schrödinger equation. The Darboux transformation is a successful method in solving many nonlocal equations with the help of symbolic computation. As applications, we obtain the bright-dark soliton, breather, rogue wave, kink, W-shaped soliton and periodic solutions of the nonlocal GI equation by constructing its 2n-fold Darboux transformation. These solutions show rich wave structures for selections of different parameters. In all these instances we practically show that these solutions have different properties than the ones for local case.  相似文献   

2.
Fokas system is the simplest (2+1)-dimensional extension of the nonlinear Schr?dinger (NLS) equation (Eq.(2), Inverse Problems 10 (1994) L19-L22).By appropriately limiting on soliton solutions generated by the Hirota bilinear method, the explicit forms of $n$-th breathers and semi-rational solutions for the Fokas system are derived. The obtained first-order breather exhibits arange of interesting dynamics. For high-order breather, it has more rich dynamical behaviors.The first-order and the second-order breather solutions are given graphically. Using the long wave limit in soliton solutions, rational solutions are obtained, which are used to analyze the mechanism of the rogue wave and lump respectively.By taking a long waves limit of a part of exponential functions in $f$ and $g$ appeared in the bilinear form of the Fokas system, many interesting hybrid solutions are constructed. The hybrid solutions illustrate various superposed wave structures involving rogue waves, lumps, solitons, and periodic line waves. Their rather complicated dynamics are revealed.  相似文献   

3.
《Physics letters. A》2020,384(9):126201
In this paper, we report a more general class of nondegenerate soliton solutions, associated with two distinct wave numbers in different modes, for a certain class of physically important integrable two component nonlinear Schrödinger type equations through bilinearization procedure. In particular, we consider coupled nonlinear Schrödinger (CNLS) equations (both focusing as well as mixed type nonlinearities), coherently coupled nonlinear Schrödinger (CCNLS) equations and long-wave-short-wave resonance interaction (LSRI) system. We point out that the obtained general form of soliton solutions exhibit novel profile structures than the previously known degenerate soliton solutions corresponding to identical wave numbers in both the modes. We show that such degenerate soliton solutions can be recovered from the newly derived nondegenerate soliton solutions as limiting cases.  相似文献   

4.
李淑青  杨光晔  李禄 《物理学报》2014,63(10):104215-104215
求出了高阶Hirota方程在可积条件下的一种精确呼吸子解,并基于此呼吸子解得到了Hirota方程的一种怪波解.在此怪波解的基础上研究了怪波的激发,发现对平面波进行周期性扰动可以激发怪波,对平面波进行高斯扰动可以更快地激发怪波,还可以直接在常数项上增加高斯扰动激发怪波.作为一个实例,采用分步傅里叶方法数值研究了在考虑自频移和拉曼增益时怪波的传输特性,自频移使怪波中心发生偏移,拉曼增益使得怪波分裂得更快,而且拉曼增益值越大怪波分裂得越快,但是拉曼增益对怪波的峰值强度没有明显影响.最后数值模拟了相邻怪波之间的相互作用特点,随着怪波之间距离的减小,怪波将合二为一,成为一束怪波,之后再分裂,并分析了拉曼增益和自频移对怪波相互作用的影响.  相似文献   

5.
Based on the similarity transformation connected the nonautonomous nonlinear Schrödinger equation with the autonomous nonlinear Schrödinger equation, we firstly derive self-similar rogue wave solutions (rational solutions) for the nonautonomous nonlinear system with a linear potential. Then, we investigate the controllable behaviors of one-rogue wave, two-rogue wave and rogue wave triplets in a soliton control system. Our results demonstrate that the propagation behaviors of rogue waves, including postpone, sustainment, recurrence and annihilation, can be manipulated by choosing the relation between the maximum value of the effective propagation distance Z m and the parameter Z 0. Moreover, the excitation time of controllable rogue waves is decided by the parameter T 0.  相似文献   

6.
Ying Yang 《中国物理 B》2021,30(11):110202-110202
The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics, physics, biological fluid mechanics, oceanography, etc. Using the reductive perturbation theory and long wave approximation, the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrödinger (NLS) equations with variable coefficients. The third-order nonlinear Schrödinger equation is degenerated into a completely integrable Sasa-Satsuma equation (SSE) whose solutions can be used to approximately simulate the real rogue waves in the vessels. For the first time, we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves. Based on the traveling wave solutions of the fourth-order nonlinear Schrödinger equation, we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall. Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube. The high-order nonlinear and dispersion terms lead to the distortion of the wave, while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.  相似文献   

7.
The dimensionless third-order nonlinear Schrödinger equation (alias the Hirota equation) is investigated via deep leaning neural networks. In this paper, we use the physics-informed neural networks (PINNs) deep learning method to explore the data-driven solutions (e.g. bright soliton, breather, and rogue waves) of the Hirota equation when the two types of the unperturbated and perturbated (a 2% noise) training data are considered. Moreover, we use the PINNs deep learning to study the data-driven discovery of parameters appearing in the Hirota equation with the aid of bright solitons.  相似文献   

8.
We construct vector rogue wave solutions of the two-dimensional two coupled nonlinear Schrödinger equations with distributed coefficients, namely diffraction, nonlinearity and gain parameters through similarity transformation technique. We transform the two-dimensional two coupled variable coefficients nonlinear Schrödinger equations into Manakov equation with a constraint that connects diffraction and gain parameters with nonlinearity parameter. We investigate the characteristics of the constructed vector rogue wave solutions with four different forms of diffraction parameters. We report some interesting patterns that occur in the rogue wave structures. Further, we construct vector dark rogue wave solutions of the two-dimensional two coupled nonlinear Schrödinger equations with distributed coefficients and report some novel characteristics that we observe in the vector dark rogue wave solutions.  相似文献   

9.
Solutions of the nonlinear Schrödinger equation, appearing as rogue waves on a spatially-periodic background envelope, are obtained using the Darboux transformation scheme. Several particular examples are illustrated numerically. These include soliton and breather solutions on a periodic background as well as higher-order structures. The results enrich our knowledge of possible analytic solutions that describe the appearance of rogue waves in a variety of situations. This work is prepared on the occasion of Prof. Helmut Brand's 60th birthday. He has made significant contributions to the science of solitons and his ideas have inspired our research into localised formations in various physical contexts.  相似文献   

10.
The (2+1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation is an important integrable model. In this paper, we obtain the breather molecule, the breather-soliton molecule and some localized interaction solutions to the BLMP equation. In particular, by employing a compound method consisting of the velocity resonance, partial module resonance and degeneration of the breather techniques, we derive some interesting hybrid solutions mixed by a breather-soliton molecule/breather molecule and a lump, as well as a bell-shaped soliton and lump. Due to the lack of the long wave limit, it is the first time using the compound degeneration method to construct the hybrid solutions involving a lump. The dynamical behaviors and mathematical features of the solutions are analyzed theoretically and graphically. The method introduced can be effectively used to study the wave solutions of other nonlinear partial differential equations.  相似文献   

11.
徐涛  陈勇  林机 《中国物理 B》2017,26(12):120201-120201
We investigate some novel localized waves on the plane wave background in the coupled cubic–quintic nonlinear Schr o¨dinger(CCQNLS) equations through the generalized Darboux transformation(DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higherorder localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions;(ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons;(iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α.These results further uncover some striking dynamic structures in the CCQNLS system.  相似文献   

12.
徐涛  陈勇 《中国物理 B》2016,25(9):90201-090201
We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system.  相似文献   

13.
In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrödinger (DNLS) equation, namely the Ablowitz–Ladik (AL) model. Our model of choice will be the so-called Salerno model, which interpolates between the AL and the DNLS models. We find that rogue wave events are drastically distorted even for very slight perturbations of the homotopic parameter connecting the two models off of the integrable limit. Our results suggest that the Peregrine soliton structure is a rather sensitive feature of the integrable limit, which may not persist under “generic” perturbations of the limiting integrable case.  相似文献   

14.
In this article we derive explicit solutions of the matrix integrable discrete nonlinear Schrödinger equation by using the inverse scattering transform and the Marchenko method. The Marchenko equation is solved by separation of variables, where the Marchenko kernel is represented in separated form, using a matrix triplet (A, B, C). Here A has only eigenvalues of modulus larger than one. The class of solutions obtained contains the N-soliton and breather solutions as special cases. We also prove that these solutions reduce to known continuous matrix NLS solutions as the discretization step vanishes.  相似文献   

15.
The generalized moment method is applied to average the Ginzburg-Landau equation with quintic nonlinearity in the neighborhood of a soliton solution to the nonlinear Schrödinger equation. A qualitative analysis of the resulting dynamical system is presented. New soliton solutions bifurcating from a known exact soliton solution are obtained. The results of the qualitative analysis are compared with those obtained by direct numerical solution of the Ginzburg-Landau equation.  相似文献   

16.
We find that the sextic nonlinear Schrödinger (NLS) equation admits breather‐to‐soliton transitions. With the Darboux transformation, analytic breather solutions with imaginary eigenvalues up to the second order are explicitly presented. The condition for breather‐to‐soliton transitions is explicitly presented and several examples of transitions are shown. Interestingly, we show that the sextic NLS equation admits not only the breather‐to‐bright‐soliton transitions but also the breather‐to‐dark‐soliton transitions. We also show the interactions between two solitons on the constant backgrounds, as well as between breather and soliton.  相似文献   

17.
In this article, a new version of the trial equation method is suggested. With this method, it is possible to find the new exact solutions of the nonlinear partial differential equations. The developed method is applied to unstable nonlinear Schrödinger equation. New exact solutions are expressed with Jacobi elliptic function solutions, 1-soliton solutions and rational function solutions. When the obtained results are examined, we can say the unstable nonlinear Schrödinger equation shows different dynamic behaviors. In addition, the physical behaviors of these new exact solution are given with two and three dimensional graphs.  相似文献   

18.
Hamiltonian equations are formulated in terms of collective variables describing the dynamics of the soliton of an integrable nonlinear Schrödinger equation on a 1D lattice. Earlier, similar equations of motion were suggested for the soliton of the nonlinear Schrödinger equation in partial derivatives. The operator of soliton momentum in a discrete chain is defined; this operator is unambiguously related to the velocity of the center of gravity of the soliton. The resulting Hamiltonian equations are similar to those for the continuous nonlinear Schrödinger equation, but the role of the field momentum is played by the summed quasi-momentum of virtual elementary system excitations related to the soliton.  相似文献   

19.
In this paper, we theoretically investigate the generation of optical rogue waves from a Lugiato-Lefever equation with variable coefficients by using the nonlinear Schrödinger equation-based constructive method. Exact explicit rogue-wave solutions of the Lugiato-Lefever equation with constant dispersion, detuning and dissipation are derived and presented. The bright rogue wave, intermediate rogue wave and the dark rogue wave are obtained by changing the value of one parameter in the exact explicit solutions corresponding to the external pump power of a continuous-wave laser.  相似文献   

20.
花巍  刘学深 《物理学报》2011,60(11):110210-110210
采用辛算法数值求解了一维立方五次方非线性Schrödinger方程,研究了不同非线性参数下非线性Schrödinger方程的动力学性质.数值结果表明,随着立方非线性参数的增加,系统经历了拟周期状态、混沌状态和周期状态,且在五次方项的调制下,呼吸子解可以退化为单孤子解. 关键词: 非线性Schrödinger方程 动力学性质 孤子 辛算法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号