首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The red blood cells (RBCs) are among the most simple and less expensive cells to purify; for this reason and for their physiological relevance, they have been extensively studied with a variety of techniques. The picture that results is that these cells have several peculiarities including extreme mechanical performances, relatively simple architecture, biological relevance and predictable behavior that make them a perfect laboratory of testing for novel techniques, methodologies and ideas. These include the re-evaluation of old concepts, such as the relationship between structure and function (which is one of the guideline of this report) but considered at the cellular level. The studies reported on this paper, indeed, exploit the full potential of an high resolution quantitative microscopy such as the atomic force microscopy (AFM) to investigate different aspect of the erythrocytes' life, death and interaction with the environment. Indeed, the erythrocytes have a special relationship with the environment that is able to deeply influence their morphology as consequence of alteration of their biochemical or biophysical status. In this context the conditions under which the erythrocytes can be considered as biochemically programmable systems have been investigated by analyzing different environmentally induced alteration of the cell's morphology and comparing the results with naturally occurring pathological morphologies. This class of studies takes great advantage by the additional consideration of the nanomechanical properties of the cells. These latter are particularly important for the cell functionality and are shown to be of practical usefulness to discriminate and partition environmental effects charging different cellular structure (e.g. membrane or membrane-skeleton). Moreover, the development of novel morphological parameter can be important to push the level of investigation on the RBCs' status towards the molecular level. In particular, we describe the introduction and use of the plasma membrane roughness as a morphometric parameter of simple derivation from the AFM images and that results sensitive to the structural integrity of the cells' membrane-skeleton. This offer a remarkable opportunity to investigate the relationship between structure and function in normal and pathological cells by using a morphometric parameter that probes the cell surface at the nanoscale level. At last, a complex but physio-pathologically important phenomenon such as the erythrocytes aging was considered. To properly analyze the many variation that the cells experience during the whole aging path we used all the parameters that the AFM can provides: quantitative imaging, analysis of the membrane roughness and local measure of the nanomechanical properties analyzed together with biochemical parameter such as the ATP content. The picture that emerged is that the aging path is triggered by the ATP intracellular concentration that influence the membrane-skeleton structure and the support exerted on the plasma membrane. The consequences of the membrane-skeleton involvement can be monitored by AFM and showed the occurrence of peculiar morphologies and morphological defects that appear in the very place where the membrane-skeleton contact with the membrane became loose. As a whole, the collected data enable to describe the entire phenomenon as a sequence of morphological intermediates following one another along the aging path.  相似文献   

2.
Since 1989, AFMs have been used to map the nanomechanical properties of surfaces using measurements such as force-distance curves. Quantification of the force and elastic parameters are critical to the nanomechanical analysis and positive identification of materials at the nanoscale, as well as for assessing behaviour at surfaces. In recent years, there have been AFM papers publishing “quantitative” values for the indentation modulus, however, many involved large uncertainties arising from the lack of calibration of key components, the use of manufacturers’ nominal values for these components or the use of incorrect models. This paper addresses the quantification issues in modulus measurement at surfaces for homogeneous materials using force-distance curves and how to do this with sufficient accuracy to identify materials at the nanoscale. We review the available theory and describe two routes to quantitative modulus measurement using both the AFM on its own and the AFM combined with a nanoindenter. The first involves the direct measurement of modulus using a fully calibrated instrument and allows depth analysis. The second uses indirect measurement through calibration by reference materials of known reduced modulus. For depth analysis by this second route, these reference moduli need to be known as a function of depth. We show that, using the second route, an unknown polymer may be analysed using the nanoindenter, its modulus determined and, providing the moduli of the polymers to be identified or distinguished differ by more than 20%, identified with 95% confidence. We recommend that users evaluate a set of reference samples using a traceable nanoindenter via the first route, and then use these to calibrate the AFM by the second route for identification of nano-regions using the AFM.  相似文献   

3.

Objective

Magnetic resonance imaging (MRI) offers great potential as a sensitive and noninvasive technique for describing the alterations in mechanical properties, as shown in vitro on intervertebral disc (IVD) or cartilage tissues. However, in vivo, the IVD is submitted to complex loading stimuli. Thus, the present question focuses on the influence of the mechanical loading during an MRI acquisition on the relaxation times, magnetization transfer and diffusion parameters within the IVD.

Methods

An apparatus allowing the compression of isolated IVDs was designed and manufactured in acrylonitrile butadiene styrene. IVDs were dissected from fresh young bovine tail, measured for their thickness and submitted to compression just before the MRI acquisition. Six discs received 0% (platen positioned at the initial disc thickness), 5% (platen positioned at 95% of the initial disc thickness), 10%, 20% and 40% deformation. The MRI parameters were compared between the loading states using mean and standard deviation for T1 and T2, and matrix subtraction for Magnetization Transfer, fractional anisotropy and apparent diffusion coefficient.

Results

The compression of the IVD did not lead to any significant change of the MRI parameters, except for the diffusion that decreased in the direction of the compressive stress.

Discussion

This experimental in vitro study shows that multi-parametric MRI on isolated discs in vitro is not sensitive to compression or to the partial confined relaxation that followed the compression.  相似文献   

4.
《Applied Surface Science》2002,185(3-4):231-242
Atomic force microscopy (AFM) analysis in conjunction with macroscopic studies such as peel testing and contact angle measurement have been undertaken to explain the nanomechanical properties of adhesive formulation consisting of triblock poly(styrene–b-butadiene–b-styrene) (SBS) copolymers. The cross-linking of this photosensitive copolymer was investigated by analyzing the mechanical and morphological changes of each phase induced by the UV exposure. Main result is that the adhesive properties are strongly influenced by the cross-linking of the polybutadiene (PB) phase leading to an increase in the surface stiffness without affecting the surface energy. AFM analysis shows that the adhesion force is mostly governed by the contact area between the adhesive and the probe. The surface mobility may explain the increase in adhesion for this pressure sensitive copolymer.  相似文献   

5.
We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.  相似文献   

6.
The effects of surface functionality and relative humidity (RH) on nanomechanical contact stiffness were investigated using atomic force acoustic microscopy (AFAM), a contact scanned-probe microscopy (SPM) technique. Self-assembled monolayers (SAMs) with controlled surface energy were studied systematically in a controlled-humidity chamber. AFAM amplitude images of a micropatterned, graded-surface-energy SAM sample revealed that image contrast depended on both ambient humidity and surface energy. Quantitative AFAM point measurements indicated that the contact stiffness remained roughly constant for the hydrophobic SAM but increased monotonically for the hydrophilic SAM. To correct for this unphysical behavior, a viscoelastic damping term representing capillary forces between the tip and the SAM was added to the data analysis model. The contact stiffness calculated with this revised model remained constant with RH, while the damping term increased strongly with RH for the hydrophilic SAM. The observed behavior is consistent with previous studies of surface energy and RH behavior using AFM pull-off forces. Our results show that surface and environmental conditions can influence accurate measurements of nanomechanical properties with SPM methods such as AFAM.  相似文献   

7.
The maintenance of multiple wavelets appears to be a consistent feature of atrial fibrillation (AF). In this paper, we investigate possible mechanisms of initiation and perpetuation of multiple wavelets in a computer model of AF. We developed a simplified model of human atria that uses an ionic-based membrane model and whose geometry is derived from a segmented magnetic resonance imaging data set. The three-dimensional surface has a realistic size and includes obstacles corresponding to the location of major vessels and valves, but it does not take into account anisotropy. The main advantage of this approach is its ability to simulate long duration arrhythmias (up to 40 s). Clinically relevant initiation protocols, such as single-site burst pacing, were used. The dynamics of simulated AF were investigated in models with different action potential durations and restitution properties, controlled by the conductance of the slow inward current in a modified Luo-Rudy model. The simulation studies show that (1) single-site burst pacing protocol can be used to induce wave breaks even in tissue with uniform membrane properties, (2) the restitution-based wave breaks in an atrial model with realistic size and conduction velocities are transient, and (3) a significant reduction in action potential duration (even with apparently flat restitution) increases the duration of AF. (c) 2002 American Institute of Physics.  相似文献   

8.
Nanocontact properties of two-dimensional (2D) materials are closely dependent on their unique nanomechanical systems, such as the number of atomic layers and the supporting substrate. Here, we report a direct observation of toplayer-dependent crystallographic orientation imaging of 2D materials with the transverse shear microscopy (TSM). Three typical nanomechanical systems, MoS2 on the amorphous SiO2/Si, graphene on the amorphous SiO2/Si, and MoS2 on the crystallized Al2O3, have been investigated in detail. This experimental observation reveals that puckering behaviour mainly occurs on the top layer of 2D materials, which is attributed to its direct contact adhesion with the AFM tip. Furthermore, the result of crystallographic orientation imaging of MoS2/SiO2/Si and MoS2/Al2O3 indicated that the underlying crystalline substrates almost do not contribute to the puckering effect of 2D materials. Our work directly revealed the top layer dependent puckering properties of 2D material, and demonstrate the general applications of TSM in the bilayer 2D systems.  相似文献   

9.
Atomic Force Microscopy (AFM) is a surface characterisation technique which analyses topology. To date, AFM studies of tissue ultrastructure have focussed on single collagen fibrils extracted from different tissues prior to analysis. Using sample preparation techniques used in electron microscopy studies, this work uses AFM to analyse the collagen ultrastructure of bulk samples from bovine deep digital flexor tendons (DDFTs). DDFT ultrastructure in regions of the tendon which experience different loading conditions are compared. Samples are analysed post-freezing and post-aldehyde fixation with either 10% formalin or 4% glutaraldehyde in order to investigate the affect of tissue preservation on tissue ultrastructure. The results demonstrate that both fibril diameter and repeat unit of the tendon vary between different regions in the dorsoventral plane, with regions subjected to both tensile and compressive forces exhibiting smaller fibril diameter and repeat unit compared to regions subjected to tensile forces alone. These differences are detectable regardless of the tissue preservation technique used. However these measured differences do vary with preservation techniques with aldehyde-fixed samples exhibiting smaller fibril diameters and larger repeat units compared to frozen samples. These results demonstrate that AFM is a highly suitable technique for the characterisation of different ultrastructures in bulk samples but that it is important to be consistent in the choice of preservation technique.  相似文献   

10.
Atrial fibrillation (AF), arising in the cardiac atria, is a common cardiac rhythm disorder that is incompletely understood. Numerous characteristics of the atrial tissue are thought to play a role in the maintenance of AF. Most traditional theoretical models of AF have considered the atrium to be a flat two-dimensional sheet. Here, we analyzed the relationship between atrial geometry, substrate size, and AF persistence, in a mathematical model involving heterogeneity. Spatially periodic properties were created by variations in times required for reactivation due to periodic acetylcholine concentration [ACh] distribution. The differences in AF maintenance between the sheet and the cylinder geometry are found for intermediate gradients of inexcitable time (intermediate [ACh]). The maximum difference in AF maintenance between geometry decreases with increasing tissue size, down to zero for a substrate of dimensions 20 × 10 cm. Generators have the tendency to be anchored to the regions of longer inexcitable period (low [ACh]). The differences in AF maintenance between geometries correlate with situations of moderate anchoring for which rotor-core drifts between low-[ACh] regions occur, favoring generator disappearance. The drift of generators increases their probability of disappearance at the tissue borders, resulting in a decreased maintenance rate in the sheet due to the higher number of no-flux boundaries. These interactions between biological variables and the role of geometry must be considered when selecting an appropriate model for AF in intact hearts.  相似文献   

11.
The capabilities of atomic force microscopy (AFM) have been rapidly expanding beyond topographical imaging to now allow for the analysis of a wide range of properties of diverse materials. The technique of nanoindentation, traditionally performed via dedicated indenters can now be reliably achieved using AFM instrumentation, enabling mechanical property determination at the nanoscale using the high spatial and force resolutions of the AFM. In the study of biological systems, from biomolecules to complexes, this technique provides insight into how mesoscale properties and functions may arise from a myriad of single biomolecules. In vivo and in situ analyses of native structures under physiological conditions as well as the rapid analysis of molecular species under a variety of experimental treatments are made possible with this technique. As a result, AFM nanoindentation has emerged as a critical tool for the study of biological systems in their natural state, further contributing to both biomaterial design and pharmacological research. In this review, we detail the theory and progression of AFM-based nanoindentation, and present several applications of this technique as it has been used to probe biomolecules and biological nanostructures from single proteins to complex assemblies. We further detail the many challenges associated with mechanical models and required assumptions for model validity. AFM nanoindentation capabilities have provided an excellent improvement over conventional nanomechanical tools and by integration of topographical data from imaging, enabled the rapid extraction and presentation of mechanical data for biological samples.  相似文献   

12.
In this study, the nanomechanical damage was investigated on the annealed Si/SiGe strained-layer superlattices (SLSs) deposited using an ultrahigh-vacuum chemical vapor deposition (UHVCVD). Nanoscratch, nanoindenter, atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to determine the nanomechanical behavior of the SiGe films. With a constant force applied, greater hardness number and larger coefficients of friction (μ) were observed on the samples that had been annealed at 600 °C, suggesting that annealing of the Si/SiGe SLSs can induce greater shear resistance. AFM morphological studies of the Si/SiGe SLSs revealed that pile-up phenomena occurred on both sides of each scratch, with the formation of some pellets and microparticles. The Si/SiGe SLSs that had been subjected to annealing under various conditions exhibited significantly different features in their indentation results. Indeed, the TEM images reveal slight dislocation propagation in the microstructures. Thus, the hardness and elastic modulus can be increased slightly after annealing treatment because the existence of comparatively unstable microstructures. It is suggested that cracking phenomena dominate the damage cause of Si/SiGe SLSs.  相似文献   

13.
Caddisfly (Trichopera) can glue diverse material underwater with a silk fiber. This makes it a particularly interesting subject for biomimetcs. Better understanding of silk composition and structure could lead to an adhesive capable to close bleeding wounds or to new biomaterials. However, while spiderweb or silkworm secretion is well researched, caddisfly silk is still poorly understood. Here we report a first nanomechanical analysis of H. Angustipennis caddisfly silk fiber. An Atomic Force Microscope (AFM) imaging shows dense 150 nm bumps on silk surface, which can be identified as one of features responsible for its outstanding adhesive properties. AFM force spectroscopy at the fiber surface showed, among others, characteristic saw like pattern. This pattern is attributed to sacrificial bond stretching and enhances energy dissipation in mechanical deformation. Similarities of some force curves observed on Tegenaria domestica spiderweb and caddisfly silk are also discussed. Steered Molecular Dynamics simulations revealed that the strength of short components of Fib-H HA species molecules, abundant in Trichoptera silk is critically dependent on calcium presence.  相似文献   

14.
In this study we sought to gain insights of the structural and mechanical heterogeneity of dentin at different length scales. We compared four distinct demineralization protocols with respect to their ability to expose the periodic pattern of dentin collagen. Additionally, we analyzed the phase contrast resulting from AFM images obtained in tapping mode to interrogate the viscoelastic behavior and surface adhesion properties of peritubular and intertubular dentin, and partially demineralized dentin collagen fibrils, particularly with respect to their gap and overlap regions. Results demonstrated that all demineralization protocols exposed the gap and overlap zones of dentin collagen fibrils. Phase contrast analyses suggested that the intertubular dentin, where the organic matrix is concentrated, generated a higher phase contrast due a higher contribution of energy dissipation (damping) than the highly mineralized peritubular region. At increasing amplitudes, viscoelasticity appeared to play a more significant contribution to the phase contrast of the images of collagen fibrils. The overlap region yielded a greater phase contrast than the more elastic gap zones. In summary, our results contribute to the perspective that, at different length scales, dentin is constituted of structural features that retain heterogeneous mechanical properties contributing to overall mechanical performance of the tissue. Furthermore, the interpretation of phase contrast from images generated with AFM tapping mode appears to be an effective tool to gain an improved understanding of the structure and property relationship of biological tissues and biomaterials at the micro- and nano-scale.  相似文献   

15.
Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale.Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement.In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail.  相似文献   

16.
Osteoarthritis (OA) is a very common disease that affects the human knee joint, particularly the articular cartilage and meniscus components which are regularly under compressive mechanical loads. Early-stage OA diagnosis is essential as it allows for timely intervention. The primary non-invasive approaches currently available for OA diagnosis include magnetic resonance imaging (MRI), which provides excellent soft tissue contrast at high spatial resolution. MRI-based knee investigation is usually performed on joints at rest or in a non-weight-bearing condition that does not mimic the actual physiological condition of the joint. This discrepancy may lead to missed detections of early-stage OA or of minor lesions. The mechanical properties of degenerated musculoskeletal (MSK) tissues may vary markedly before any significant morphological or structural changes detectable by MRI. Recognizing distinct deformation characteristics of these tissues under known mechanical loads may reveal crucial joint lesions or mechanical malfunctions which result from early-stage OA. This review article summarizes the large number of MRI-based investigations on knee joints under mechanical loading which have been reported in the literature including the corresponding MRI measures, the MRI-compatible devices employed, and potential challenges due to the limitations of clinical MRI sequences.  相似文献   

17.
To investigate the damages to the extracellular matrix in articular cartilage due to cryopreservation, the depth-dependent concentration profiles of glycosaminoglycans (GAGs) in 34 cartilage specimens from canine humeral heads were imaged at 13-μm pixel resolution using the in vitro version of the dGEMRIC protocol in microscopic MRI (μMRI). In addition, a biochemical assay was used to determine the GAG loss from the tissue to the solution where the tissue was immersed. For specimens that had been frozen at −20°C or −80°C without any cryoprotectant, a significant loss of GAG (as high as 56.5%) was found in cartilage, dependent upon the structural zones of the tissue and the conditions of cryopreservation. The cryoprotective abilities of dimethyl sulfoxide (DMSO) as a function of its concentration in saline and storage temperature were also investigated. A 30% DMSO concentration was sufficient in preventing the reduction of GAG in the tissue at the −20°C storage temperature, but a 50% concentration of DMSO was necessary for the −80°C cryopreservation. These imaging results were verified by the biochemical analysis.  相似文献   

18.
This review focuses on our basic study results and clinical experience of fluorescence endoscopy for the gastrointestinal (GI) tract. Collagen, which fluoresces in the green wavelength range, is one of the major sources of tissue autofluorescence (AF) and AF imaging systems are now available. With their use, however, it is important to take into account tissue changes other than, or in addition to, changes in gross tissue morphology. These may include alterations in the local blood volume, tissue metabolic activity, and relative fluorophore concentrations. New AF imaging systems are very easy to use, because white light endoscopy can be changed to AF at the push of a button, and hold great promise for diagnosis of early carcinomas and premalignant lesions in the GI tract. In particular, AF endoscopy has potential for identification of small or flat tumors, tumor margins and premalignant lesions in Barrett’s esophagus, as well as for assessing tumor grade and response to therapy. However, large-scale studies are needed to clarify the clinical impact of this new diagnostic approach.  相似文献   

19.
Low back pain (LBP) is a costly and widely prevalent health disorder in the U.S. One of the most common causes of LBP is degenerative disc disease (DDD). There are many imaging techniques to characterize disc degeneration; however, there is no way to directly assess the material properties of the intervertebral disc (IVD) within the intact spine. Magnetic resonance elastography (MRE) is an MRI-based technique for non-invasively mapping the mechanical properties of tissues in vivo. The purpose of this study was to investigate the feasibility of using MRE to detect shear wave propagation in and determine the shear stiffness of an axial cross-section of an ex vivo baboon IVD, and compare with shear displacements from a finite element model of an IVD motion segment in response to harmonic shear vibration. MRE was performed on two baboon lumbar spine motion segments (L3–L4) with the posterior elements removed at a range of frequencies (1000–1500 Hz) using a standard clinical 1.5 T MR scanner. Propagating waves were visualized in an axial cross-section of the baboon IVDs in all three motion-encoding directions, which resembled wave patterns predicted using finite element modeling. The baboon nucleus pulposus showed an average shear stiffness of 79 ± 15 kPa at 1000 Hz. These results suggest that MRE is capable of visualizing shear wave propagation in the IVD, assessing the stiffness of the nucleus of the IVD, and can differentiate the nucleus and annulus regions.  相似文献   

20.
The effect of nitrogen ion implantation on the nanomechanical properties of single crystal Si was evaluated by means of a conventional Vickers indentation and nanoindentation tests. The images of Si surfaces before and after nitrogen implantation were observed and their average surface roughnesses were measured by an atomic force microscope (AFM), while the changes in the morphology and microstructure of the single crystal Si by N implantation were examined by field emission scanning electron microscope (SEM) and X-ray diffractometer (XRD). In addition, the hydrophilic/hydrophobic surface property of the N-doping Si film was determined from the measurement of water contact angle by the sessile drop technique. Furthermore, the effects of the doping energy on the surface contact angle and the surface roughness and the Vickers hardness of the film are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号