首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Motor fans used for cooling electric motors have long been recognized as one of the major noise sources. Current paper focuses on design of motor fan for electric motors that are used in submarines for pumping sea water. Noise reduction at source is very important and the critical task, for under water applications. An attempt has been made for reduction of motor fan noise by modification of noise sources. For this purpose computational fluid dynamics and computational aeroacoustics code FLUENT package is used to identify the noise sources and to know the overall sound pressure level of motor fan. From these results it is observed that aerodynamic noise is the dominate fan noise source. Aerodynamic noise of motor fan can be reduced by modifying fan geometry. The aerodynamic noise level of motor fan has been reduced by replacing the straight blades with various digits of NACA (National Advisory Committee for Aeronautics) 65 series airfoil sections. From the numerical results it is observed that the minimum sound pressure level for NACA 65-010 is 65.4 dB(A). These numerical results are compared with measurements in a semi-anechoic chamber. It is found that there is good agreement between numerical and experimental results.  相似文献   

2.
本文基于CFD模拟方法,分析了空调器室外机上下并联轴流风机系统噪声源分布,建立了室外机气动声学预测方法.研究发现,上下并联轴流风机系统由宽频和离散频率噪声组成,宽频噪声是影响室外机噪声总声压级的重要因素.涡声分析表明,涡脱落噪声是宽频噪声的主要影响因素.基于CFD的叶片尾缘涡脱落噪声预测方法计算得到宽频声压误差为2 dB,考虑离散频率影响时,室外机A计权总声压级预测误差小于2 dBA.基于CFD的点源时域预测模型,捕捉到了上下并联轴流风机系统的离散频率噪声峰值,且在上下叶轮前二阶谐波处预测值与实验值吻合较好.  相似文献   

3.
CAA broadband noise prediction for aeroacoustic design   总被引:1,自引:0,他引:1  
The current status of a computational aeroacoustics (CAA) approach to simulate broadband noise is reviewed. The method rests on the use of steady Reynolds averaged Navier-Stokes (RANS) simulation to describe the time-averaged motion of turbulent flow. By means of synthetic turbulence the steady one-point statistics (e.g. turbulence kinetic energy) and turbulent length- and time-scales of RANS are translated into fluctuations having statistics that very accurately reproduce the initial RANS target-setting. The synthetic fluctuations are used to prescribe sound sources which drive linear perturbation equations. The whole approach represents a methodology to solve statistical noise theory with state-of-the-art CAA tools in the time-domain. A brief overview of the synthetic turbulence model and its numerical discretization in terms of the random particle-mesh (RPM) and fast random particle-mesh (FRPM) method is given. Results are presented for trailing-edge noise, slat noise, and jet noise. Some problems related to the formulation of vortex sound sources are discussed.  相似文献   

4.
Predicting broadband fan noise is key to reduce noise emissions from aircraft and wind turbines. Complete CFD simulations of broadband fan noise generation remain too expensive to be used routinely for engineering design. A more efficient approach consists in synthesizing a turbulent velocity field that captures the main features of the exact solution. This synthetic turbulence is then used in a noise source model. This paper concentrates on predicting broadband fan noise interaction (also called leading edge noise) and demonstrates that a random particle mesh method (RPM) is well suited for simulating this source mechanism. The linearized Euler equations are used to describe sound generation and propagation. In this work, the definition of the filter kernel is generalized to include non-Gaussian filters that can directly follow more realistic energy spectra such as the ones developed by Liepmann and von Kármán. The velocity correlation and energy spectrum of the turbulence are found to be well captured by the RPM. The acoustic predictions are successfully validated against Amiet’s analytical solution for a flat plate in a turbulent stream. A standard Langevin equation is used to model temporal decorrelation, but the presence of numerical issues leads to the introduction and validation of a second-order Langevin model.  相似文献   

5.
This study concerns the unsteady flows in turbomachines in general, and the aeroacoustics of fans in particular. The principal objective of this paper is the determination of the influence of the upstream environment on the acoustic and aerodynamic behavior of axial fans. After analysis of the various sources of noise present in turbomachines, interest is focused on the influence of the disturbances of the velocity field at the suction. Accordingly, the effect of the presence of a contoured duct and a lack thereof at the inlet of an axial flow fan is analyzed . The results show the strong involvement of the upstream turbulence level in the generation of the noise, and in particular, of broadband noise.  相似文献   

6.
Noise reduction in a vacuum cleaner with a brush nozzle for cleaning a bed blanket is investigated numerically in fluid dynamic aspects. Governing equations describing nonlinear flow fields in a suction nozzle are solved simultaneously. The components of a rotary fan, a brush drum, and a separation block are installed in the nozzle. First, flow patterns in the nozzle are analyzed and based on them, flow resistance is evaluated to find a primary noise source. Flow resistance induces the loss of a suction performance as well as noise generation. In the brush nozzle, the separation block and the rotary fan obstruct smooth air flow and result in high level of noise emission. The rotation of the fan itself affects little noise generation. From the numerical results, a method to reduce noise and maintain the suction performance is suggested. In this method, the suction performance is increased through the optimization of the separation block, which is attained by the modification of its shape. And then, the height of a fan blade is shortened, leading to the performance loss. At the cost of it, the sound power level of noise is reduced by 4-5 dB(A) and at the same time, the tonal noise and the sound quality are improved appreciably. The method has been verified by experimental tests. It is found that in the brush nozzle, flow resistance is critical in noise emission and accordingly, fluid dynamic approach to noise reduction is effective.  相似文献   

7.
开式轴流风扇气动噪声预测   总被引:1,自引:0,他引:1  
本文采用LES/FW-H的匹配方法,研究了开式轴流风扇内部旋涡流动特征及其与叶片表面干涉引起的气动噪声之间的联系,同时进行了远场噪声预测,探讨了叶轮不同表面辐射噪声时的频谱分布特征.研究结果表明,开式轴流风扇吸力面附近形成的叶尖涡和前缘分离涡在吸力面叶片表面相应位置形成大压力波动,形成主要噪声源;叶片吸力面的辐射噪声可以通过改善吸力面附近的旋涡流动来降低;低速轴流叶轮由叶轮壁面辐射的噪声以宽频成分为主.  相似文献   

8.
复杂流动系统中气动噪声源特性的研究是研究噪声传播及建立气动噪声模型的基础.本文采用实验的手段研究了贯流风扇的气动噪声源特性。实验在本底噪声为19 dB(A)的静音室中进行,采用高精度,高频响的声压传感器分别测量了室内机进口,蜗舌壁面,近叶轮出口,远场等位置的声压波动.对得到的原始压力脉动数据进行了快速傅里叶变换,基于FFT变换的联合时频分析,基于连续小波变换的联合时频分析.分别在时间域和频率域进行了不同测量点的对比分析。结果表明,实验机表现为明显的宽频噪声特性,其主要噪声源为流场中的涡流.基于连续小波变换的时频分析方法能更精确地表现信号的非定常特性,能对信号进行不同层次的深入分析,得到更精确的结果.  相似文献   

9.
This paper deals with the global reduction of axial flow fan noise in ducts in a building using a hybrid passive-active noise control method. The effectiveness of using an infra-red device as a reference signal source is also investigated. It is shown that using such a hybrid noise control system over an axial-flow fan reduces the overall sound pressure level by 5 dB(A) in the surrounding environment and global control of the blade passing frequency can also be achieved. This paper also shows that using an infra-red device as a reference signal source produces marginally better control as compared with using a microphone reference sensor. Moreover, long term stability is guaranteed and the possibility of acoustic feedback is eliminated.  相似文献   

10.
This paper is an experimental investigation of an inverse technique for deducing the amplitudes of the modes radiated from a turbofan engine, including schemes for stablizing the solution. The detection of broadband modes generated by a laboratory-scaled fan inlet is performed using a near-field array of microphones arranged in a geodesic geometry. This array geometry is shown to allow a robust and accurate modal inversion. The sound power radiated from the fan inlet and the coherence function between different modal amplitudes are also presented. The knowledge of such modal content is useful in helping to characterize the source mechanisms of fan broadband noise generation, for determining the most appropriate mode distribution model for duct liner predictions, and for making sound power measurements of the radiated sound field.  相似文献   

11.
The purpose of this study was to develop methods for visualizing the sound radiation from aeroacoustic sources in order to identify their source strength distribution, radiation patterns, and to quantify the performance of noise control solutions. Here, cylindrical Near-field Acoustical Holography was used for that purpose. In a practical holographic measurement of sources comprising either partially correlated or uncorrelated subsources, it is necessary to use a number of reference microphones so that the sound field on the hologram surface can be decomposed into mutually incoherent partial fields before holographic projection. In this article, procedures are described for determining the number of reference microphones required when visualizing partially correlated aeroacoustic sources; performing source nonstationarity compensation; and applying regularization. The procedures have been demonstrated by application to a ducted fan. Holographic tests were performed to visualize the sound radiation from that source in its original form. The system was then altered to investigate the effect of two modifications on the fan's sound radiation pattern: first, leaks were created in the fan and duct assembly, and second, sound absorbing material was used to line the downstream duct section. Results in all three cases are shown at the blade passing frequency and for a broadband noise component. In the absence of leakage, both components were found to exhibit a dipole-like radiation pattern. Leakage was found to have a strong influence on the directivity of the blade passing tone. The increase of the flow resistance caused by adding the acoustical lining resulted in a nearly symmetric reduction of sound radiation.  相似文献   

12.
采用Navier-Stokes方程和标准k-ε湍流模型,对五种不同结构的弯掠轴流风机A/B/C/D/E进行稳态数值模拟,结合给定的性能要求筛选出B/E风机。以稳态流场为基础,采用大涡模拟(LES)与基于Lighthill声类比的FW-H模型相结合的方法对B/E风机进行非定常计算和气动噪声预测,并将预测结果与试验数据进行了对比验证。分析了以叶轮表面作为噪声源时B/E风机的涡流噪声频谱特性,研究了风机三维非定常内部流场中旋涡分布特性,并探讨了风机旋转区域内部声压级的分布规律。  相似文献   

13.
本文采用计算流体动力学和声类比相结合的混合方法对空调用离心风机进行流场以及声场的计算,同时进行风机风量和噪声的实验测量,验证所采用的数值计算模型和计算方法的有效性.针对原型非常规蜗壳,提取蜗壳中间截面型线进行直蜗舌的蜗壳设计,在此基础上设计了三种倾斜蜗舌的蜗壳.根据数值计算结果,对最优倾斜蜗舌进行了实验验证。经实验测试,风机在各个工况点风量均有提升,在最大风量点风量提升6.0%,噪声降低1.4 dB(A).数值分析风机内部流动特征及噪声特性,发现在蜗舌附近流动区域内湍流强度和涡量明显减小,在叶片通过频率处声功率谱密度以及噪声峰值明显下降,这也表明风机的旋转噪声得到了有效控制。  相似文献   

14.
Centrifugal fans are widely used and the noise generated by these machines causes one of the serious problems. In general, the centrifugal fan noise is often dominated by tones at blade passage frequency and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cut-off in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and considering the scattering effect of the casing. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of the centrifugal impeller. A discrete vortex method is used to model the centrifugal impeller and a wedge and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. In order to consider the scattering and diffraction effects of the casing, Kirchhoff-Helmholtz boundary element method (BEM) is developed. The source of Kirchhoff-Helmholtz BEM is newly developed, so the sound field of the centrifugal fan can be obtained. A centrifugal impeller and wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effect of the wedge.  相似文献   

15.
针对亚音速轴流风扇后掠叶片定子的宽频辐射噪声问题,介绍并推导了叶栅宽频辐射声功率计算公式,通过该公式计算后掠叶片定子的宽频辐射声功率级,并从湍流入流和叶栅响应的角度揭示后掠角对定子辐射噪声的影响机理。在此基础上,考虑到实际风扇定子工作在转子尾流中的情况,采用Gauss尾流模型模拟转子尾流,建立转子尾流湍流波数谱模型,推导得到定子叶片与转子尾流互作用的宽频辐射声功率计算公式。通过与NASA风扇试验模型对比得到,考虑转子尾流的定子叶栅宽频辐射声功率计算公式能够较好的预报后掠定子宽频辐射声功率。最后,针对试验风扇模型,分析叶片安装角、叶片弦长对后掠叶片定子辐射噪声的影响。   相似文献   

16.
Plasma actuators were used in this work to control flow-induced broadband noise radiated from a bluff body. The model consists of a cylinder and a component (torque link) that is installed on the lee side of the cylinder. The objective is to reduce the broadband noise mainly generated through the impingement of the cylinder wake on the torque link. The flow-structure interactions between the cylinder wake and the torque link are reduced by manipulating the cylinder wake with the externally imposed body force from the plasma actuators, which lead to the attenuation of the broadband noise. The control performance with the plasma actuators is studied in an anechoic chamber facility by examining far-field sound level and near-field acoustic source changes. At a free stream speed of 30 m/s, corresponding to the Reynolds number of 2.1×105, far-field measurements suggested that a reduction of up to 3.2 dB in overall sound pressure level. The near-field beamforming results also show approximately 3 dB reduction in the interested frequency ranges. The physical mechanisms related to broadband noise control were also discussed. This work suggests that plasma actuators offer the potential for solving flow-induced noise control problem at broadband frequencies.  相似文献   

17.
An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies.  相似文献   

18.
Fan is one of the main noise sources of the room air-conditioners. Axial flow fans are widely used in the outdoor unit of split type air-conditioners. The interaction between the fan and the heat exchanger should be taken into consideration. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information of the flow field. This paper is to understand the generation mechanism of sound and to develop a prediction method for the flow field and the acoustic pressure field of the outdoor unit. Acoustic measurement is performed in a semi-anechoic chamber. Effects of each components is analyzed. Based on commercial computational fluid dynamics (CFD) code, Fluent, Fukano’s model is used to predict the overall sound pressure level of broadband noise. The predicted sound pressure levels based on original Fukano’s model are 7.66 dB and 7.42 dB lower than measurement results at 780 rpm and 684 rpm, respectively. And the errors are about 13%. However, when wake width and relative velocity are both calculated by numerical simulations and the distance to blade trailing edge is taken into consideration, the difference of sound pressure level between measurement and prediction is less than 3.4 dB and errors less than 5.5% while the distance is less than 10 mm. Thus, the distance to blade trailing edge should also be an important parameter for Fukano’s model. In comparison with experimental results, it is clearly shown that the Fukano method based on numerical simulation can provide more accuracy than the original Fukano model and numerical results are in a reliable level.  相似文献   

19.
在管道后传声的数值模拟中,必须考虑平均流剪切层的散射效应,然而在非均匀剪切流动下时域求解线化欧拉方程会面临Kelvin-Helmholtz不稳定波产生和放大的难题。已有的不稳定波抑制技术通常很难获得令人满意的结果。本文采用一种混合方法,首先引入有限时段的宽频声源波包将声波和不稳定波分离,进而采用声源滤波器技术对不稳定波进行抑制。数值验证算例选择半无限长轴对称环形硬壁直管道,采用计算气动声学方法时域求解2.5维线化欧拉方程,无背景流动的数值解与解析解符合很好,验证了程序的精度与可靠性,非均匀流动算例则表明所采用波包加声源滤波器混合方法对不稳定波抑制效果明显,对声场影响很小,充分显示了该方法的精度与可行性。  相似文献   

20.
襟翼侧缘噪声机理及修型降噪设计   总被引:1,自引:0,他引:1       下载免费PDF全文
襟翼侧缘噪声是飞机起降阶段机体噪声的重要噪声源。采用极大涡模拟对襟翼侧缘非定常流场进行数值模拟,分析其噪声产生机理.基于此,提出了两种襟翼侧缘修型方式,应用虚拟渗透面的Ffowcs Williams and Hawkings(FW-H)声比拟方法将修型构型的远场噪声频谱特性和指向性与基准构型对比分析,研究其降噪效果。通过流场和声场的数值模拟表明,襟翼侧缘噪声属于宽频噪声。不同的襟翼侧缘形状改变了流场形态、侧缘涡结构以及涡系的发展过程,进而对声源分布和远场噪声特性产生影响。结果表明:在给定的5°计算迎角下,两种襟翼侧缘修型方式在保证增升装置的原有升阻气动特性的前提下,能达到减小全场总声压级1~2 dB的降噪效果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号