首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Ma Y  Wang X  Leng J  Xiao H  Dong X  Zhu J  Du W  Zhou P  Xu X  Si L  Liu Z  Zhao Y 《Optics letters》2011,36(6):951-953
Coherent beam combination of a 1.08?kW fiber amplifier array has been demonstrated for the first time, to our knowledge. In the experiment, nine fiber amplifiers are tiled into a 3×3 array, and the output power of each amplifier is approximately 120?W. A single frequency dithering algorithm is used to compensate the phase noises between the elements, which runs on a signal processor based on field programmable gate array for phase control on the fiber amplifiers. When the phase control system goes into closed loop, the fringe contrast of the far-field intensity pattern is improved to more than 85%, and the residual phase error is less than λ/15.  相似文献   

2.
We demonstrate coherent beam combining of two-dimensional fiber amplifier arrays with a total of 137 W output power using stochastic parallel gradient descent (SPGD) algorithm. Compact all-fiber polarization-maintained single frequency fiber amplifier chains are developed and four fiber amplifiers are arranged to 2 × 2 laser array with a fill factor of 70% in the near-field. Active phase control is implemented by a digital signal processor (DSP) based SPGD controller. The fringe visibility of the coherent combined beam profile is as high as 81% when the system is closed-loop controlled despite perturbations of the environment.  相似文献   

3.
Coherent beam combining (CBC) of a polarization-maintaining fiber amplifier and a non-polarization-maintaining fiber amplifier is presented. The experiment is based on adaptive polarization control and active phase control. The stochastic parallel gradient decent (SPGD) algorithm is used for the adaptive polarization control in the non-polarization-maintaining fiber amplifier and the active phase control is realized by single frequency dithering (SFD) algorithm. When the adaptive polarization control system and the phase control system go into closed loop, the fringe contrast of far-field intensity pattern is improved to more than 87.7%. A scalable architecture for CBC of two styles fiber amplifiers is also proposed.  相似文献   

4.
We use all-fiber single-mode lasers as seed source, amplifiers and pump laser coupling amplifier has been experimentally investigated, respectively. The maximum output power is 10.4 W, with the slope efficiency of 54.4% when the seed laser power is 1 W, and the slope efficiency is 48.7% when the seed laser power is 2 W. The slope efficiency of this scheme is higher than that of the all-fiber amplifier. This can be explained by the loss of pump power at the splice dots. The wavelength of the fiber amplifier is 1947.6 nm, the same as the seed laser's, with a linewidth of 2 nm. We estimate the beam quality to be M2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.  相似文献   

5.
LaB6在低压强氮气和氦气中的放电特性   总被引:8,自引:11,他引:8       下载免费PDF全文
研究了LaB6在1~10 Pa氮气和氦气中的直流和脉冲放电特性以及放电过程对电极的影响。结果表明,电极直径为5 mm的LaB6氦气放电管在脉冲工作状态下可以长期稳定放电。在脉冲电压为2.2 kV、脉冲宽度10 ms、频率13.3 Hz下,脉冲峰值放电电流超过120 A。氦气放电管在放电过程中,阴极表面有离子的清洗和活化作用,可以使电极的表面逸出功降低,提高放电管的发射能力和稳定性。LaB6作为气体放电电极具有寿命长、延迟时间短、放电电流大等优点,可用于重复强流脉冲气体放电的高压高速开关器件。  相似文献   

6.
A theoretical study of the temperature dependent noise effects of praseodymium-doped fiber amplifiers (PEDFAs) has been examined. The Pr3+-doped ZBLAN fiber amplifier pumped at 1017 nm and Pr3+-doped GeGa-sulfied fiber amplifier pumped at 1028 nm are chosen. The temperature-dependent rate and propagation equation related to four-level system consideration which is based on the population difference among amplification levels has been used. The population difference depends on pump and signal powers, Boltzman factor KB, cross-sections, noise figure (NF) and Pr3+ concentration. The numerical results obtained over the temperature range from −20 °C to + 60 °C are used to present an analytical expression for the signal gain and noise figure effects in PDFAs length and noise figure with input pump power. The amplified spontaneous emission (ASE) has been taken into account.  相似文献   

7.
进行了非保偏放大器与保偏放大器的相干合成的实验研究。通过随机并行梯度下降(SPGD)算法对非保偏放大器进行偏振自适应控制,使非保偏放大器输出激光的消光比达到11.5 dB,与保偏放大器在同一偏振方向上的光功率占总功率的93.4%。利用单抖动法进行非保偏放大器与保偏放大器的主动相位控制,实现相干合成。实验结果表明:SPGD算法能够有效实现偏振自适应控制,偏振自适应控制前后相干合成远场的条纹对比度从80.1%提高到87.2%,相干合成的效果提升明显;通过增加参与合成的放大器路数,并在各路激光中引入多级功率放大器,能够得到更高的合成功率输出。  相似文献   

8.
Surinder Singh  R.S. Kaler 《Optik》2007,118(2):74-82
We numerically simulated the ten channels at 10 Gb/s dense wavelength division multiplexing (DWDM) transmission faithfully over 17,227 km using 70 km span of single mode fiber (SMF) and dispersion compensating fiber (DCF) using optimum span scheme at channel spacing 20 GHz. For this purpose, inline optimized semiconductor optical amplifiers (SOAs) and DPSK format are used. We optimized the SOA parameters for inline amplifier with minimum crosstalk and amplified spontaneous emission noise with sufficient gain at bias current 400 mA. For this bias current, constant gain 36.5 dB is obtained up to saturation power 21.35 mW. We have also optimized the optical phase modulator bandwidth for 400 mA current which is around 5.5 GHz with crosstalk −14.2 dB between two channels at spacing 20 GHz.We show the 10×10 Gb/s transmission over 70 km distance with inline amplifier has good signal power received as compared to without amplifier, even at equal quality factor. We further investigated the optimum span scheme for 5670 km transmission distance for 10×10 Gb/s with channel spacing 20 at 5.5 GHz optical phase modulator bandwidth. As we increase the transmission distance up to 17,227 km, there is increase in power penalty with reasonable quality.The impact of optical power received and Q factor at 5670 and 17,227 km transmission distance for different span schemes for all channels has been illustrated. For launched optical power less than saturation, all channels are obtained at bit error rate floor of 10−10.  相似文献   

9.
In this paper, the variational method is employed for minimizing the gain ripple of multi-wavelength fiber Raman amplifiers. The variance of gain spectrum of the fiber Raman amplifier is regarded as the cost function, restriction on total pump power and average gain is given as the constraints of the minimization problem. It is shown that the minimization problem with any necessary constraints on the pump powers, average gain and signal to noise ratio, is reduced to a two-point boundary value problem. The method gives the entire possible local and global solutions. The method is applied to different examples of fiber Raman amplifiers with different lengths from 25 km to 100 km and different numbers of pumps from 4 to 20 to determine the pump powers and wavelengths for minimum gain ripple. It was obtained for a 100 km fiber Raman amplifier the gain ripple can be about 0.1 dB with on-off gain more than 20 dB.  相似文献   

10.
Combining the advantages of diode-end-pumped Nd: YVO4 and diode-side-pumped Nd: YAG amplifiers, a high average power and high beam quality picosecond laser is designed. The system delivers a picosecond laser with average power of 43.4 W and good beam quality of M2 < 1.7. By focusing the high power picosecond laser in LBO crystal, 532 nm green laser with maximal power of 20.8 W is generated and the conversion efficiency of second-harmonic generation reaches 56.4% when 17.7 W green laser obtained from the fundamental frequency laser with power of 31.4 W and beam quality of M2 < 1.25.  相似文献   

11.
In this paper, optical phase conjugation (OPC) located in the transmitter based on four wave mixing (FWM) in a semiconductor optical amplifier (SOA) is first simulated in 40 Gb/s CO-OFDM systems, and the fiber nonlinearity impairment of the transmission link is precompensated before OPC by transmission through a fiber with large nonlinearity coefficient. Simulation results show that the nonlinear threshold (NLT) can be increased by about > 3 dB and maximum Q factor can be increased by about 2 dB for the single-channel system. For 50-GHz-Spacing WDM systems, the maximum Q and NLT are increased by about 1 dB, even in the presence of cross phase modulation (XPM) from neighbouring WDM channels. It is found that this OPC subsystem located in the transmitter, not necessary to be inserted into the middle of link, can mitigate the fiber nonlinearity impairment for both single-channel and WDM systems.  相似文献   

12.
A high average power picosecond laser amplification system with diode-end-pumped Nd:YVO4 and diode-side-pumped Nd:YAG is described. Laser with power up to 92.7 W, repetition frequency of 73.3 MHz, pulse duration of 26.5 ps, and beam quality of M2 < 3.5 is generated in the amplification system. Thermal-birefringence-induced depolarization in the Nd:YAG rod laser head amplifier is measured to be 21.9 W though birefringence compensation is performed.  相似文献   

13.
Efficient conversion into the mid-IR of a low pulse-energy (2.5 mJ) Nd:YAG laser is achieved by cascaded KTiOPO4 (KTP) and ZnGeP2 (ZGP) optical parametric oscillators followed by a ZGP optical parametric amplifier. The first stage 2.13 μm degenerate KTP OPO uses four KTP crystals in a walk-off compensated geometry and an elliptical pump beam focal geometry to produce up to 2.2 W from 6.3 W incident. The 2.13 μm e-ray pumps a Type-I ZGP OPO, which produces 0.5 W of light in the 3.8-4.8 μm spectral region that in turn is amplified by a 2.13 μm o-ray pumped optical parametric amplifier generating 0.84 W with an M2 of <2.  相似文献   

14.
A novel method for measuring the nonlinear refractive index of an optical fiber using a spectral ratio between the modulation frequency and a harmonic component in a modulated optical fiber ring resonator (OFRR) is proposed. The spectral ratio between the modulation frequency and the 2nd-harmonics generated by phase-modulation through the OFRR is increased with increasing the input light power and has peaks above 5 W input power, however, the peaks was shifted to the lower input power below 1 W by averaging taken into account of the phase distribution. A experimental setup consisted of an OFRR system and an Ar-laser as a pump light source was used to determine the nonlinear refractive index of an optical fiber. In the experimental results, the peaks of the spectral ratio as a function of the input power was found out at 0.8 W and 0.45 W of the input power corresponding to the input source line at 488.0 nm and 514.5 nm, respectively. The profile was similar to that obtained by the simulation and the nonlinear refractive index of a optical fiber was determined as 1.0 × 10−22 m2/V2 by a relationship between the input power giving the peak and the nonlinear refractive index.  相似文献   

15.
A pulse master-oscillator fiber power amplifier system with china-made large-mode-area fiber and a (6+1)×1 multimode combiner is demonstrated. The system generates up to 4.8 W of amplified radiation (100 kHz) at a wavelength of 1064 nm with a near-diffraction-limited beam quality (M2=1.2), and the overall slope efficiency with respect to the launched pump power is 50%. Some basic characteristics of this system, including the pulse-amplification characteristics, the gain characteristics, as well as the emission spectrum characteristics are investigated in detail.  相似文献   

16.
A large aperture tapered fused silica fiber phase conjugate mirror with a maximum 50.7% stimulated Brillouin scattering (SBS) reflectivity is presented, which is operated with 400 Hz pulse repetition rate and 36.5 mJ input pulse energy. To the best of our knowledge, it is the first time that over 50% SBS reflectivity is achieved by using solid-state phase conjugate mirror under such high pulse repetition rate and high pulse energy. With much higher pulse repetition rate of 500 and 1000 Hz, the maximum SBS reflectivity is 41.2% and 33.3%, respectively. A single-longitudinal-mode Nd:YAG laser is experimentally studied with master oscillator power amplifier (MOPA) scheme using such a tapered fiber as a phase conjugate mirror. A 101 mJ pulse energy is achieved at 400 Hz repetition rate, with a pulse width of 6 ns and a M2 factor of less than 2. The corresponding peak power reaches 16.8 MW.  相似文献   

17.
Xiaodong Yang  Yong Bo  Aicong Geng 《Optik》2011,122(6):467-470
A diode laser-pumped acoustic-optic Q-switched Nd:YAG master-oscillator power amplifier laser is presented. The laser is quasi continuously pumped at 1.1 kHz with a pulse width of 172 μs, and the ultrasonic frequency of the AO Q-switcher is set at a higher value (53 kHz). The master oscillator is designed as a thermally near-unstable-resonator, which presents an average output power of 48 W with a beam quality value of M2 = 1.41 and a Q-switching pulse duration of 121 ns. The maximum average power of the MOPA system is 654 W, and the beam quality is M2 = 6.  相似文献   

18.
Y. Liu  H. R. Wang  W. H. Li 《Laser Physics》2012,22(10):1606-1609
We use all fiber single-mode lasers as seed source, all fiber amplifiers and pump laser coupling amplifier has been experimentally investigated, respectively. The max output power of all fiber amplifier is 30.6 W, corresponding slope efficiency is 39.1%. The two setups, amplifier output laser spectrum finely holds the property of seed laser spectrum, the wavelength of output laser are both 1947.6 nm, the spectrum width is less than 2 nm as same as the wavelength of seed laser. We estimate the beam quality to be M 2 = 2.42, clearly indicating nearly diffraction-limited beam propagation.  相似文献   

19.
The characteristics of hybrid fiber amplifier (HFA) are investigated. HFA is composed of three stages: short-length EDFA pre-stage, DCF Raman amplifier, and power boosting EDFA. HFA has low noise figure, high output power, and also wide input power dynamic range. Gain control method of HFA is presented experimentally, and the transient gain excursion is suppressed to less than 0.5 dB at 3 dB channel add-drop. HFA can be used as line amplifier in optical transmission link even combined with distributed Raman amplifier due to wide input power dynamic range. The transmission performance of HFA is better than EDFA by more than 1.0 dB of Q-factor in 720 km SMF transmission.  相似文献   

20.
We present a strip extracting algorithm (SEA) for detecting and locking the phase noise of fiber amplifiers. Based on the algorithm, the phase noise of a 10 W Yb fiber amplifier is obtained and locked with an active segment mirror (ASM) and a high-speed CCD camera. Experimental results indicate that within the first 3 seconds after turn-on transients occur the amplitude of phase noise exceeds 20 waves, whereas in thermal steady-state operation it amounts to only several waves for the same time span. After phase locking, the Peak-to-Valley (PV) value of phase noise is close to ~1/10λ (λ=1064 nm), and the control bandwidth of the system is ~25 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号