首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed.This paper is dedicated to Joel Lebowitz on his 60th-birthday.  相似文献   

2.
We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier-Stokes equation, recently established by Constantin and Iyer, which shows that this stochastic conservation law arises from particle-relabelling symmetry of the action. We discuss issues of irreversibility, energy dissipation, and the inviscid limit of Navier-Stokes solutions in the framework of the stochastic variational principle. In particular, we discuss the connection of the stochastic Kelvin Theorem with our previous “martingale hypothesis” for fluid circulations in turbulent solutions of the incompressible Euler equations.  相似文献   

3.
In this paper, we determined a numerical solution of the Navier-Stokes equations for the flow of incompressible fluid inside the contraction geometry. The governing equations are written in the vorticity-stream function formulations. The numerical solution is based on a technique of automatic numerical generation of a curvilinear coordinate system by transforming the governing equation into the computational plane. The transformed equations are approximated using central differences and solved simultaneously by the alternating direction implicit method and successive over relaxation iteration method.  相似文献   

4.
A five-modes truncation of the Navier-Stokes equations for a two dimensional incompressible fluid on a torus is considered. A computer analysis shows that for a certain range of the Reynolds number the system exhibits a stochastic behaviour, approached through an involved sequence of bifurcations.Partially supported by G.N.F.M., C.N.R.  相似文献   

5.
Starting with the Vlasov-Boltzmann equation for a binary fluid mixture, we derive an equation for the velocity field u when the system is segregated into two phases (at low temperatures) with a sharp interface between them. u satisfies the incompressible Navier-Stokes equations together with a jump boundary condition for the pressure across the interface which, in turn, moves with a velocity given by the normal component of u. Numerical simulations of the Vlasov-Boltzmann equations for shear flows parallel and perpendicular to the interface in a phase segregated mixture support this analysis. We expect similar behavior in real fluid mixtures.  相似文献   

6.
于欣 《计算物理》1986,3(2):217-226
本文对于一大类数值求解二维Navier-Stokes方程边值问题的有限元格式给出了零散度空间Vh的一组简单基函数,讨论了速度的数值误差对压力的数值解的影响,并提出一个改进算法。  相似文献   

7.
A model of parallel noninteracting cascades in the spectral space is suggested in terms of which the turbulent flow of an incompressible fluid subject to arbitrary large-scale velocity gradients is described. The linear parts of model equations for two polarization components of the velocity are derived from the Navier-Stokes equations, and their nonlinear parts correspond to the 1D Burgers model. Using the model suggested, explicit expressions for subgrid Reynolds stresses without empiric parameters are obtained.  相似文献   

8.
B.U. Felderhof 《Physica A》2008,387(24):5991-5998
The transient settling in a viscous incompressible fluid of a spherical dilute cloud of particles starting from rest under the influence of a small constant applied force is studied in a continuum model on the basis of the linearized Navier-Stokes equations. Explicit expressions are derived for the motion of the cloud and for the flow velocity and pressure of the fluid. Equations of transient Stokesian dynamics are formulated that allow numerical study of the motion of a dilute cloud of particles of arbitrary initial configuration.  相似文献   

9.
A self-consistent procedure for deriving subgrid scale models for a complex system of equations is presented. When applied to the Navier-Stokes equation for incompressible flow it reproduces the differential version of the stress-similarity model with a correct coefficient. As an example the complete system of equations is derived for an ocean global circulation model.  相似文献   

10.
A kinetic equation with a relaxation time model for wave-particle collisions is considered. Similarly to the BGK-model of gas dynamics, it involves a projection onto the set of equilibrium distributions, nonlinearly dependent on the moments of the distribution function. Under a diffusive and low Mach number scaling the macroscopic limit is a generalization of the incompressible Navier-Stokes equations, where the momentum equations are coupled to a diffusive equation for an energy distribution function. By a moment approximation, this system can be related to a low Mach number model of fluid mechanics, which already appeared in the literature. Finally, for a linearized version corresponding to Stokes flow an existence result for initial value problems is proved.  相似文献   

11.
This paper establishes a blowup criterion for the three-dimensional viscous, compressible, and heat conducting magnetohydrodynamic (MHD) flows. It is essentially shown that for the Cauchy problem and the initial-boundary-value one of the three-dimensional compressible MHD flows with initial density allowed to vanish, the strong or smooth solution exists globally if the density is bounded from above and the velocity satisfies Serrin’s condition. Therefore, if the Serrin norm of the velocity remains bounded, it is not possible for other kinds of singularities (such as vacuum states vanishing or vacuum appearing in the non-vacuum region or even milder singularities) to form before the density becomes unbounded. This criterion is analogous to the well-known Serrin’s blowup criterion for the three-dimensional incompressible Navier-Stokes equations, in particular, it is independent of the temperature and magnetic field and is just the same as that of the barotropic compressible Navier-Stokes equations. As a direct application, it is shown that the same result also holds for the strong or smooth solutions to the three-dimensional full compressible Navier-Stokes system describing the motion of a viscous, compressible, and heat conducting fluid.  相似文献   

12.
R. Schmitz 《Physica A》1980,102(1):161-178
We present a general theorem for the force multipole moments of arbitrary order induced in a spherically symmetric particle immersed in a fluid whose motion satisfies the linear Navier-Stokes equation for steady incompressible viscous flow. The multipole moments are expressed in terms of the unperturbed fluid velocity field. It is shown that for a particle with a finite extension only a few terms give rise to fluid perturbations which are not confined to the interior of the particle. We give explicit results for a polymer satisfying the Debye-Bueche-Brinkman equations and for a hard sphere with mixed slip-stick boundary conditions.  相似文献   

13.
We study the partial regularity of a 3D model of the incompressible Navier-Stokes equations which was recently introduced by the authors in [11]. This model is derived for axisymmetric flows with swirl using a set of new variables. It preserves almost all the properties of the full 3D Euler or Navier-Stokes equations except for the convection term which is neglected in the model. If we add the convection term back to our model, we would recover the full Navier-Stokes equations. In [11], we presented numerical evidence which seems to support that the 3D model develops finite time singularities while the corresponding solution of the 3D Navier-Stokes equations remains smooth. This suggests that the convection term play an essential role in stabilizing the nonlinear vortex stretching term. In this paper, we prove that for any suitable weak solution of the 3D model in an open set in space-time, the one-dimensional Hausdorff measure of the associated singular set is zero. The partial regularity result of this paper is an analogue of the Caffarelli-Kohn-Nirenberg theory for the 3D Navier-Stokes equations.  相似文献   

14.
于欣 《计算物理》1985,2(3):337-346
在本系列文章里,我们提出一种新的解不可压缩流体力学问题的有限元方法——降阶法。这种算法是通过寻找空间V~h的一组简单的基函数从而对原来的混合有限元问题降阶来实现的。它的优点是非常节省机时和内存。作为这一系列文章的首篇,本文提出了降阶法的基本算法,并对一个具体的有限元格式给出了空间V~h的非常简单的基函数及降阶法的具体步骤。  相似文献   

15.
One of the central problems in the mathematical theory of turbulence is that of breakdown of smooth (indefinitely differentiable) solutions to the equations of motion. In 1934 J. Leray advanced the idea that turbulence may be related to the spontaneous appearance of singularities in solutions of the 3—D incompressible Navier-Stokes equations. The problem is still open. We show in this report that breakdown of smooth solutions to the 3—D incompressible slightly viscous (i.e. corresponding to high Reynolds numbers, or highly turbulent) Navier-Stokes equations cannot occur without breakdown in the corresponding solution of the incompressible Euler (ideal fluid) equation. We prove then that solutions of distorted Euler equations, which are equations closely related to the Euler equations for short term intervals, do breakdown.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and partially supported by the National Science Foundation under Grant No. MCS-82-01599  相似文献   

16.
A model obtained by a seven-mode truncation of the Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is studied. This model, extending a previously studied five-mode one, exhibits a very rich and varied phenomenology including some remarkable properties of hysteresis (i.e., coexistence of attractors). A stochastic behavior is found for high values of the Reynolds number, when no stable fixed points, closed orbits, or tori are present.  相似文献   

17.
We derive hydrodynamic equations describing the evolution of a binary fluid segregated into two regions, each rich in one species,which are separated (on the macroscopic scale) by a sharp interface. Our starting point is a Vlasov-Boltzmann (VB) equation describing the evolution of the one particle position and velocity distributions, fi (x, v, t), i = 1, 2. The solution of the VB equation is developed in a Hilbert expansion appropriate for this system. This yields incompressible Navier-Stokes equations for the velocity field u and a jump boundary condition for the pressure across the interface. The interface, in turn, moves with a velocity given by the normal component of u.  相似文献   

18.
In this paper, we determined a numerical solution of the incompressible Navier-Stokes equations for the flow inside the contraction geometry. The governing equations are written in the vorticity-stream function formulations. The numerical solution is based on a technique of automatic numerical generation of a curvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over-relaxation iteration.  相似文献   

19.
We prove by an explicit construction that solutions to incompressible 3D Euler equations defined in the periodic cube Ω=[0,L]3 can be mapped bijectively to a new system of equations whose solutions are globally regular. We establish that the usual Beale-Kato-Majda criterion for finite-time singularity (or blowup) of a solution to the 3D Euler system is equivalent to a condition on the corresponding regular solution of the new system. In the hypothetical case of Euler finite-time singularity, we provide an explicit formula for the blowup time in terms of the regular solution of the new system. The new system is amenable to being integrated numerically using similar methods as in Euler equations. We propose a method to simulate numerically the new regular system and describe how to use this to draw robust and reliable conclusions on the finite-time singularity problem of Euler equations, based on the conservation of quantities directly related to energy and circulation. The method of mapping to a regular system can be extended to any fluid equation that admits a Beale-Kato-Majda type of theorem, e.g. 3D Navier-Stokes, 2D and 3D magnetohydrodynamics, and 1D inviscid Burgers. We discuss briefly the case of 2D ideal magnetohydrodynamics. In order to illustrate the usefulness of the mapping, we provide a thorough comparison of the analytical solution versus the numerical solution in the case of 1D inviscid Burgers equation.  相似文献   

20.
The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Kato (Math Sci Res Inst Publ 2:85?C98, 1984) says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body??s dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, which seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号