首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conditions providing the formation of periodic vortex lattices of an interference nature in an atomic Bose-Einstein condensate (i.e., in the absence of rotation of the condensate) are determined. Spatially periodic exact solutions of the nonlocal nonlinear Schrödinger equation (the generalized Gross-Pitaevskii equation) that describes the Bose-Einstein condensate of a dilute gas of alkali metal atoms with due regard for the nonlocality of interatomic interactions are obtained in the form of a set of two or three plane waves. It is shown that periodic vortex lattices can be produced in interference experiments with a Bose-Einstein condensate of a dilute gas of alkali metal atoms.  相似文献   

2.
We present a family of exact solutions of the one-dimensional nonlinear Schro dinger equation which describes the dynamics of a bright soliton in Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Our results show that, under a safe range of parameters, the bright soliton can be compressed into very high local matter densities by increasing the absolute value of the atomic scattering length, which can provide an experimental tool for investigating the range of validity of the one-dimensional Gross-Pitaevskii equation. We also find that the number of atoms in the bright soliton keeps dynamic stability: a time-periodic atomic exchange is formed between the bright soliton and the background.  相似文献   

3.
New exact periodic wave solutions for the 2D Ginzburg-Landau equation are obtained using the homogeneous balance principle and general Jacobi elliptic-function method. Furthermore, a blow up solution is provided. At the end, some properties about these solutions are showed by the graphs.  相似文献   

4.
In this Letter we study the integrability of a class of Gross-Pitaevskii equations managed by Feshbach resonance in an expulsive parabolic external potential. By using WTC test, we find a condition under which the Gross-Pitaevskii equation is completely integrable. Under the present model, this integrability condition is completely consistent with that proposed by Serkin, Hasegawa, and Belyaeva [V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. Lett. 98 (2007) 074102]. Furthermore, this integrability can also be explicitly shown by a transformation, which can convert the Gross-Pitaevskii equation into the well-known standard nonlinear Schrödinger equation. By this transformation, each exact solution of the standard nonlinear Schrödinger equation can be converted into that of the Gross-Pitaevskii equation, which builds a systematical connection between the canonical solitons and the so-called nonautonomous ones. The finding of this transformation has a significant contribution to understanding the essential properties of the nonautonomous solitons and the dynamics of the Bose-Einstein condensates by using the Feshbach resonance technique.  相似文献   

5.
With the help of a set of exact closed-form solutions to the stationary Gross Pitaevskii equation, we compre-hensively investigate Landau and dynamical instabilities of a Bose-Einstein condensate in a periodic array of quantum wells. In the tight-binding limit, the anaiyticai expressions for both Landau and dynamical instabilities are obtained in terms of the compressibility and effective mass of the BEC system. Then the stability phase diagrams are shown to be similar to the one in the case of the sinusoidal optical lattice.  相似文献   

6.
In this paper the macroscopic quantum state of Bose-Einstein condensates in optical lattices is studied by solving the periodic Gross-Pitaevskii equation in one-dimensional geometry. It is shown that an exact solution seen to be a travelling wave of excited macroscopic quantum states resultes in a persistent atom current, which can be controlled by adjusting of the barrier height of the optical periodic potential. A critical condition to generate the travelling wave is demonstrated and we moreover propose a practical experiment to realize the persistent atom current in a toroidal atom waveguide.  相似文献   

7.
Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the (3+1)-dimensional Gross-Pitaevskii equation with repulsive harmonic potential. In the limit cases, the solitary wave solutions are obtained as well. We also investigate the dynamical evolution of the solitons with a time-dependent complicated potential.  相似文献   

8.
Approximate solutions of the Gross-Pitaevskii (GP) equation, obtained upon neglection of the kinetic energy, are well known as Thomas-Fermi solutions. They are characterized by the compensation of the local potential by the collisional energy. In this article we consider exact solutions of the GP-equation with this property and definite values of the kinetic energy, which suggests the term “kinetic Thomas-Fermi” (KTF) solutions. Despite their formal simplicity, KTF-solutions can possess complex current density fields with unconventional topology. We point out that a large class of light-shift potentials gives rise to KTF-solutions. As elementary examples, we consider one-dimensional and two-dimensional optical lattice scenarios, obtained by means of the superposition of two, three and four laser beams, and discuss the stability properties of the corresponding KTF-solutions. A general method is proposed to excite two-dimensional KTF-solutions in experiments by means of time-modulated light-shift potentials.  相似文献   

9.
Homoclinic and heteroclinic solutions are two important concepts that are used to investigate the complex properties of nonlinear evolutionary equations. In this Letter, we perform hyperbolic and linear stability analysis, and prove the existence of homoclinic and heteroclinic solutions for two-dimensional cubic Ginzburg-Landau equation with periodic boundary condition and even constraint. Then, using the Hirota's bilinear transformation, we find the closed-form homoclinic and heteroclinic solutions. Moreover, we find that the homoclinic tubes and two families of heteroclinic solutions are asymptotic to a periodic cycle in one dimension.  相似文献   

10.
Using the tanh method and a variable separated ordinary difference equation method to solve the double sineGordon equation, we derive some new exact travelling wave solutions, especially a new type of noncontinuous solitary wave solutions. These noncontinuous solitary wave solutions are verified by using the conservation law theory.  相似文献   

11.
New exact solutions of the (2 +1)-dimensional double sine-Gordon equation are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon system and double sine-Gordon equation. Two arbitrary functions are included into the Jacobi elliptic function solutions. New doubly periodic wave solutions are obtained and displayed graphically by proper selections of the arbitrary functions.  相似文献   

12.
Attempts are made to look for the soliton content in the exact solutions of certain types of nonlinear diffusion-reaction (DR) equations with the quadratic and cubic nonlinearities. Such equations may arise in a variety of contexts in physical problems. In this Letter using the auxiliary equation method, some new solitary and travelling wave solutions of such nonlinear DR equations are obtained in a very general form. Several interesting special cases of these general solutions are also discussed.  相似文献   

13.
Xin Zeng  Xuelin Yong 《Physics letters. A》2008,372(44):6602-6607
In this Letter, a new mapping method is proposed for constructing more exact solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose the (2+1)-dimensional Konopelchenko-Dubrovsky equation and the (2+1)-dimensional KdV equations to illustrate the validity and advantages of the method. As a result, many new and more general exact solutions are obtained.  相似文献   

14.
In this letter, we study an integrable Camassa-Holm hierarchy whose high-frequency limit is the Camassa-Holm equation. Phase plane analysis is employed to investigate bounded traveling wave solutions. An important feature is that there exists a singular line on the phase plane. By considering the properties of the equilibrium points and the relative position of the singular line, we find that there are in total three types of phase planes. Those paths in phase planes which represented bounded solutions are discussed one-by-one. Besides solitary, peaked and periodic waves, the equations are shown to admit a new type of traveling waves, which concentrate all their energy in one point, and we name them deltons as they can be expressed as some constant multiplied by a delta function. There also exists a type of traveling waves we name periodic deltons, which concentrate their energy in periodic points. The explicit expressions for them and all the other traveling waves are given.  相似文献   

15.
Hao-Cai Li 《Physics letters. A》2008,372(16):2746-2756
The two-component Bose-Einstein condensates (BECs) trapped in 2D optical lattice potential is studied analytically. A new family of stationary exact solutions of the coupled Gross-Pitaevskii (GP) equations with 2D periodic potential are obtained. In particular, the phase diagram of the system in the trigonometric limit is determined analytically according to the nontrivial phase macroscopic wave functions of the condensates.  相似文献   

16.
Li Zou  Zhen Wang  Zhi Zong 《Physics letters. A》2009,373(45):4142-4151
In this Letter, we generalize the differential transform method to solve differential-difference equation for the first time. Two simple but typical examples are applied to illustrate the validity and the great potential of the generalized differential transform method in solving differential-difference equation. A Padé technique is also introduced and combined with GDTM in aim of extending the convergence area of presented series solutions. Comparisons are made between the results of the proposed method and exact solutions. Then we apply the differential transform method to the discrete KdV equation and the discrete mKdV equation, and successfully obtain solitary wave solutions. The results reveal that the proposed method is very effective and simple. We should point out that generalized differential transform method is also easy to be applied to other nonlinear differential-difference equation.  相似文献   

17.
李高清  陈海军  薛具奎 《物理学报》2010,59(3):1449-1455
利用双模近似方法研究了一维双组分玻色-爱因斯坦凝聚体(Bose-Einstein condensates,BECs)的量子隧穿特性.从描述三维双组分BECs系统的Gross-Pitaevskii方程(GPE)出发,得到了描述一维体系的GP方程.把体系波函数写成原子数和相位指数的乘积,得到描述体系隧穿特性的费曼方程.数值求解费曼方程,研究了原子之间相互作用(双组分BECs体系原子之间的相互作用包括组分内部原子之间的相互作用和不同组分原子之间的相互作用)对隧穿特性的影响.结果显示,当原子之间的相互作用较弱时,体系发生量子隧穿现象,表现为原子数在平衡位置附近作周期振荡;随着原子之间相互作用增强,体系经历一个临界状态,进入自俘获状态,即由于原子之间相互作用的存在,在对称双势阱中演化的BECs可以呈现出原子数高度的不对称分布,好像绝大数原子被其中一个势阱俘获.从隧穿到自俘获原子之间的相互作用存在一个临界值,从而体系的能量也对应一个临界值,根据体系的哈密顿函数,就能求出相互作用临界值的表达式.  相似文献   

18.
In this Letter, by using a novel extended homoclinic test approach (EHTA) we obtain two new types of exact periodic solitary-wave and kinky periodic-wave solutions for Jimbo-Miwa equation. Moreover, we investigate the strangely mechanical features of wave solutions. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

19.
In this Letter, a variable-coefficient extended mapping method is proposed to seek new and more general exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients and (2+1)-dimensional Nizhnik-Novikov-Veselov equations. As a result, many new and more general exact solutions are obtained including Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the proposed method provides a very effective and powerful mathematical tool for solving a great many nonlinear evolution equations in mathematical physics.  相似文献   

20.
徐园芬 《物理学报》2013,62(10):100202-100202
利用动力系统方法研究一维Tonks-Girardeau原子气区域中Gross-Pitaevskii (GP)方程简化模型的一些精确行波解以及这些精确行波解的动力学行为, 研究系统的参数对行波解的动力学行为的影响. 在不同的参数条件下, 获得了一维Tonks-Girardeau原子气区域中GP方程简化模型的六个行波解的精确参数表达式. 关键词: 动力系统方法 孤立波解 周期波解 扭波解  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号