首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
We develop a complete mathematical theory for the symmetrical solutions of the generalized nonlinear Schrödinger equation based on the concept of angular pseudomomentum. We consider the symmetric solitons of a generalized nonlinear Schrödinger equation with a nonlinearity depending on the modulus of the field. We provide a rigorous proof of a set of mathematical results justifying that these solitons can be classified according to the irreducible representations of a discrete group. Then we extend this theory to non-stationary solutions and study the relationship between angular momentum and pseudomomentum. We illustrate these theoretical results with numerical examples.  相似文献   

2.
We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton.  相似文献   

3.
Zhenya Yan 《Physics letters. A》2010,374(4):672-4279
The analytical nonautonomous rogons are reported for the inhomogeneous nonlinear Schrödinger equation with variable coefficients in terms of rational-like functions by using the similarity transformation and direct ansatz. These obtained solutions can be used to describe the possible formation mechanisms for optical, oceanic, and matter rogue wave phenomenon in optical fibres, the deep ocean, and Bose-Einstein condensates, respectively. Moreover, the snake propagation traces and the fascinating interactions of two nonautonomous rogons are generated for the chosen different parameters. The obtained nonautonomous rogons may excite the possibility of relative experiments and potential applications for the rogue wave phenomenon in the field of nonlinear science.  相似文献   

4.
The possibility of the decomposition of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) into a pair of coupled Schrödinger-type equations, is investigated. It is shown that, under suitable mathematical conditions, it is possible to construct the exact controlled solutions of the 3D GPE from the solutions of a linear 2D Schrödinger equation coupled with a 1D nonlinear Schrödinger equation (the transverse and longitudinal components of the GPE, respectively). The coupling between these two equations is the functional of the transverse and the longitudinal profiles. The applied method of nonlinear decomposition, called the controlling potential method (CPM), yields the full 3D solution in the form of the product of the solutions of the transverse and longitudinal components of the GPE. It is shown that the CPM constitutes a variational principle and sets up a condition on the controlling potential well. Its physical interpretation is given in terms of the minimization of the (energy) effects introduced by the control. The method is applied to the case of a parabolic external potential to construct analytically an exact BEC state in the form of a bright soliton, for which the quantitative comparison between the external and controlling potentials is presented.  相似文献   

5.
马正义  马松华  杨毅 《物理学报》2012,61(19):190508-190508
非线性Schrödinger方程是物理学中具有广泛应用的非线性模型之一. 本文采用相似变换, 将具有色散系数的(2+1)维非线性Schrödinger方程简化成熟知的Schrödinger方程, 进而得到原方程的有理解和一些空间孤子.  相似文献   

6.
We present analytical bright multisoliton solutions to the generalized nonautonomous nonlinear Schrödinger equation with time- and space-dependent distributed coefficients in Fourier-synthesized optical lattice potential based on the similarity transformation technique. Such solutions exist in certain constraint conditions on the coefficients depicting dispersion, nonlinearity, and gain (or loss). Various shapes of bright solitons and interesting interactions between two solitons are observed, including soliton trains, collapse and revival of condensates, and two periodic M-shape solitons with collision. Phenomena of a few solitons and physical applications of interest to the field are discussed.  相似文献   

7.
We investigate the exact bright and dark solitary wave solutions of an effective 1D Bose-Einstein condensate (BEC) by assuming that the interaction energy is much less than the kinetic energy in the transverse direction. In particular, following the earlier works in the literature Pérez-García et al. (2004) [50], Serkin et al. (2007) [51], Gurses (2007) [52] and Kundu (2009) [53], we point out that the effective 1D equation resulting from the Gross-Pitaevskii (GP) equation can be transformed into the standard soliton (bright/dark) possessing, completely integrable 1D nonlinear Schrödinger (NLS) equation by effecting a change of variables of the coordinates and the wave function. We consider both confining and expulsive harmonic trap potentials separately and treat the atomic scattering length, gain/loss term and trap frequency as the experimental control parameters by modulating them as a function of time. In the case when the trap frequency is kept constant, we show the existence of different kinds of soliton solutions, such as the periodic oscillating solitons, collapse and revival of condensate, snake-like solitons, stable solitons, soliton growth and decay and formation of two-soliton bound state, as the atomic scattering length and gain/loss term are varied. However, when the trap frequency is also modulated, we show the phenomena of collapse and revival of two-soliton like bound state formation of the condensate for double modulated periodic potential and bright and dark solitons for step-wise modulated potentials.  相似文献   

8.
Optical solitons in a monomode fiber   总被引:4,自引:0,他引:4  
We discuss the propagation of optical solitons in a monomode fiber as a model of long-distance-high-bit-rate transmission system. We give several new results which did not appear in our previous papers on this subject, such as (1) a derivation of the perturbed nonlinear Schrödinger equation from the Maxwell equation, (2) on the integrability of the perturbed nonlinear Schrödinger equation, (3) a discussion of the soliton as a stable fixed point of certain infinite-dimensional map generated by a transmission system with periodic excitations.On leave of absence from The Ohio State University, Department of Mathematics, Columbus, Ohio 43210.  相似文献   

9.
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the generalized nonlinear Schrödinger or Gross-Pitaevskii equation. Analytical theory is illustrated by examples of dynamics of ring solitons in light beams propagating through a photorefractive medium and in non-uniform condensates confined in axially symmetric traps. Analytical results agree very well with the results of our numerical simulations.  相似文献   

10.
In this paper, a Hirota method is developed for applying to the nonlinear Schrödinger equation with an arbitrary time-dependent linear potential which denotes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensation. The nonlinear Schrödinger equation is decoupled to two equations carefully. With a reasonable assumption the one- and two-soliton solutions are constructed analytically in the presence of an arbitrary time-dependent linear potential.  相似文献   

11.
The periodic spin domains of spinor Bose-Einstein condensates confined in a one-dimensional optical lattice are studied in terms of the equation of motion of the spinor which is reduced to the nonlinear Schrödinger equation with the help of Holstein-Primakoff transformation. It is shown that the spin domains obtained analytically can be easily controlled by adjusting the light-induced dipole-dipole interaction, which is realizable in optical lattice created by red-detuned laser beams with modulating intensity. The dynamical stability of the spin domains is also demonstrated.  相似文献   

12.
We investigate effects of the application of a kick to one-dimensional matter-wave solitons in a self-attractive Bose-Einstein condensate trapped in an optical lattice. The resulting soliton’s dynamics is studied within the framework of the time-dependent nonpolynomial Schrödinger equation. The crossover from the pinning to quasi-free motion crucially depends on the size of the kick, strength of the self-attraction, and parameters of the optical lattice.  相似文献   

13.
In this paper we show a systematical method to obtain exact solutions of the nonautonomous nonlinear Schrödinger (NLS) equation. An integrable condition is first obtained by the Painlevé analysis, which is shown to be consistent with that obtained by the Lax pair method. Under this condition, we present a general transformation, which can directly convert all allowed exact solutions of the standard NLS equation into the corresponding exact solutions of the nonautonomous NLS equation. The method is quite powerful since the standard NLS equation has been well studied in the past decades and its exact solutions are vast in the literature. The result provides an effective way to control the soliton dynamics. Finally, the fundamental bright and dark solitons are taken as examples to demonstrate its explicit applications.  相似文献   

14.
We present new solutions to the nonautonomous nonlinear Schrödinger equation that may be realized through convenient manipulation of Bose-Einstein condensates. The procedure is based on the modulation of breathers through an analytical study of the one-dimensional Gross-Pitaevskii equation, which is known to offer a good theoretical model to describe quasi-one-dimensional cigar-shaped condensates. Using a specific ansatz, we transform the nonautonomous nonlinear equation into an autonomous one, which engenders composed states corresponding to solutions localized in space, with an oscillating behavior in time. Numerical simulations confirm stability of the modulated breathers against random perturbation on the input profile of the solutions.  相似文献   

15.
We study the dynamics of bright and dark matter-wave solitons in the presence of a spatially varying nonlinearity. When the spatial variation does not involve zero crossings, a transformation is used to bring the problem to a standard nonlinear Schrödinger form, but with two additional terms: an effective potential one and a non-potential term. We illustrate how to apply perturbation theory of dark and bright solitons to the transformed equations. We develop the general case, but primarily focus on the non-standard special case whereby the potential term vanishes, for an inverse square spatial dependence of the nonlinearity. In both cases of repulsive and attractive interactions, appropriate versions of the soliton perturbation theory are shown to accurately describe the soliton dynamics.  相似文献   

16.
The two-component vector nonlinear Schrödinger equation, with mixed signs of the nonlinear coefficients, is considered. This equation is integrable by the inverse scattering transform method. The evolution of a single pulse and interaction of pulses are studied. It is shown that the dynamics of a single pulse is reduced to the scalar nonlinear Schrödinger equation of focusing or defocusing type, depending on the initial parameters. It is found that the interaction of pulses results in the appearance of additional solitons and bound states of several solitons. The asymptotic field profile in the non-soliton regime is also obtained.  相似文献   

17.
We emulate the ground state of a Bose–Einstein condensate in a time-dependent isotropic harmonic trap by constructing analytic simulacra of a transformed wavefunction in the regions around the origin and far from the origin. This transformed wavefunction is obtained through a pseudoconformal transformation and is a function of new spatial and temporal variables, while the simulacra are generalisations of asymptotic solutions of the nonlinear Schrödinger equation and they are matched by requiring continuity not only of the wavefunction and of its slope, but of its curvature as well. The resulting piecewise analytic simulacra coincide almost perfectly with the numerically obtained solutions of the time-dependent nonlinear Schrödinger equation and constitute an easy and accurate analytic method for describing fully the condensate ground state.  相似文献   

18.
In this paper, by introducing some appropriate transformation and with the help of symbolic computation, we study exact travelling wave solutions for the high-order modified Boussinesq equation, a single nonlinear reaction-diffusion equation and a generalized nonlinear Schrödinger equation with nonlinear terms of any order by use of the extended-tanh method. Thus, some new exact travelling-wave solutions, which contain kink-shaped solitons, bell-shaped solitons, periodic solutions, combined formal solitons, rational solutions and singular solitons for these equations, are obtained.  相似文献   

19.
Chi-Feng Chen  Sien Chi 《Optik》2006,117(10):489-491
The wave equation of TM polarized subwavelength beam propagations in a nonlinear planar waveguide is derived beyond the paraxial approximation. This modified equation contains more higher-order linear and nonlinear terms than the nonlinear Schrödinger equation. The propagation of fundamental subwavelength spatial solitons is numerically studied. It is shown that the effect of the higher nonlinear terms is significant. That is, for the propagation of narrower beam the modified nonlinear Schrödinger equation is more suitable than the nonlinear Schrödinger equation.  相似文献   

20.
In this paper, we consider the nonlinear Schrödinger equation with variable coefficients, and by using direct transformation of variables and functions, the explicit chirped gray one- and two-soliton solutions are presented. Based on the exact solutions, we in detail analyze the propagation characteristics of the chirped gray soliton, including the stability against either the deviation from integrable condition or the initial perturbation, and interaction between the chirped gray solitons. The results show that the gray soliton can be compressed by choosing the appropriate initial chirp, and the chirped gray pulses can stably propagate along optical fibers remaining the character of solitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号