首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The growth of Ge and SiGe alloy films on Si substrates has attracted considerable interest in the last years because of their importance for optoelectronic devices as well as Si-based high speed transistors. Here we give a short overview on our recent real time stress measurements of Ge and SiGe alloy films on Si(0 0 1) performed with a sensitive cantilever beam technique and accompanied by structural investigations with atomic force microscopy. Characteristic features in the stress curves provide detailed insight into the development and relief of the misfit strain. For the Stranski–Krastanow system Ge/Si(0 0 1) as well as for SiGe films with Si contents below 20%, the strain relaxation proceeds mainly into two steps: (i) by the formation of 3D islands on top of the Ge wetting layer; (ii) via misfit dislocations in larger 3D islands and upon their percolation.  相似文献   

2.
The results of the structural and morphological studies of Ge growth on a Si(111) surface at the initial stages of epitaxy by means of scanning tunneling microscopy and high-resolution transmission electron microscopy are presented. Epitaxy of Ge has been performed in the temperature range of 300 to 550°C under the quasi-equilibrium growth conditions and low deposition rates of 0.001–0.01 bilayers per minute. The stages of the formation and decay of the nanoclusters as a result of the redistribution of the Ge atoms into two-dimensional pseudomorphic Ge islands before the formation of the continuous wetting layer have been experimentally detected. The positions of the preferable nucleation of three-dimensional Ge islands on the wetting layer formed after the coalescence of the two-dimensional islands have been analyzed. The c2 × 8 → 7 × 7 → c2 × 8 phase transitions due to the lateral growth of the islands and the plastic relaxation of the misfit strains occur on the surface of the three-dimensional Ge islands when their strain state changes. The misfit dislocations gather at the interface and two types of steps lower than one bilayer are formed on the surface of the three-dimensional islands during the relaxation process.  相似文献   

3.
The surface reconstruction of epitaxial Ge layer on Si(100) was studied with ultrahigh vacuum scanning tunneling microscopy. The surface with 0.8 ML Ge grown in the presence of a hydrogen surfactant reveals the same structures as found in chemical-vapor-deposited Ge on Si(100): (i) defective (2×1) structure at 290°C, (ii) irregular (2×N) in Ge layer and defective (2×1) in bare Si regions at 420°C, and (iii) (2×N) in Ge-covered regions and c(4×4) in bare Si regions at 570°C. The morphology of step edges does not change with temperature, implying that the c(4×4) reconstruction is anisotropic in nature.  相似文献   

4.
The two-dimensional (2D) to three-dimensional (3D) morphological transition in strained Ge layers grown on Si(001) is investigated using scanning tunneling microscopy. The initial step takes place via the formation of 2D islands which evolve into small ( approximately 180 A) 3D islands with a height to base diameter ratio of approximately 0.04, much smaller than the 0.1 aspect ratio of 105-faceted pyramids which had previously been assumed to be the initial 3D islands. The "prepyramid" Ge islands have rounded bases with steps oriented along <110> and exist only over a narrow range of Ge coverages, 3.5-3.9 monolayers.  相似文献   

5.
The structure of Ge(105)-(1 x 2) grown on Si(105) is examined by scanning tunneling microscopy (STM) and first-principles calculations. The morphology evolution with an increasing amount of Ge deposited documents the existence of a tensile surface strain in Si(105) and its relaxation with increasing coverage of Ge. A detailed analysis of high-resolution STM images and first-principles calculations produce a new stable model for the Ge(105)-(1 x 2) structure formed on the Si(105) surface that includes the existence of surface strain. It corrects the model developed from early observations of the facets of "hut" clusters grown on Si(001).  相似文献   

6.
The initial surface roughening during Ge epitaxy on Si(001) is shown to arise from an effective repulsion between S(A) surface steps and dimer vacancy lines (VLs). This step-VL interaction gradually inactivates a substantial fraction of adatom attachment sites at the growth front, causing a rapid increase in the rate of two-dimensional island nucleation. The mutual repulsion hinders the crossing of S(A) surface steps over VLs in the second layer, thus organizing the developing surface roughness into a periodic array of anisotropic 2D terraces. Isolated (105) facets forming at specific sites on this ordered template mediate the assembly of first 3D Ge islands.  相似文献   

7.
High-quality strain relaxed SiGe layer has been fabricated on Si using a thin Ge interlayer grown at 330 °C. The properties of SiGe layers with and without the low-temperature Ge interlayer are compared. The results indicate that the Ge interlayer plays an important role in the preparation of SiGe layer. The strain relaxed low-temperature Ge interlayer with coalesced island surface, acting as a stable and compliant template, could remove the cross-hatch misfit dislocation lines on surface and promote the strain relaxation in the SiGe layer homogeneously.  相似文献   

8.
The hetero growth of Ge on Si results in formation of 3D clusters with an uncontrolled defect structure. Introduction of a monolayer of a surfactant completely changes the growth mode to a 2D-layer growth (Frankvan der Merwe) with a continuous and smooth Ge film on Si(111). The surfactant is not incorporated but segregates and floates on the growing Ge film. The saturation of the dangling bonds of the semiconductor reduces the surface free energy and drives the strong segregation. The effect on the growth process is the selective change of activation energies which are important for diffusion and the mobility of the Ge. Up to a thickness of 8 MLs (MonoLayers) the misfit-related strain of the pseudomorphic Ge film is relaxed by formation of a micro rough surface. This allows a partial relaxation of the Ge towards its bulk lattice constant which would not be possible for a flat and continuous film. For thicker Ge films the misfit of 4.2% is relieved by a periodic dislocation network, which is confined to the Si-Ge interface. Ge-films thicker than 20 MLs are free of defects and completely relaxed to the Ge bulk lattice constant: a model system for perfect heteroepitaxial growth.  相似文献   

9.
吴黎黎  吴锋民 《计算物理》2013,30(3):441-446
用动态Monte-Carlo方法对Ge在单层表面活性剂Pb覆盖的Si(111)表面上沿团簇边缘扩散进行三维模拟.重点讨论Ge原子是否沿团簇边缘扩散,沿边缘扩散时的最大扩散步数及最近邻原子数对三维生长的影响,并计算薄膜表面粗糙度研究三维生长模式.模拟表明Ge沿团簇边缘扩散的行为对薄膜生长模式的影响很大,同时讨论了ES势对三维生长模式的影响.  相似文献   

10.
Distortions of the sqrt[3]x sqrt[3] Sn/Ge(111) and Sn/Si(111) surfaces are shown to reflect a disproportionation of an integer pseudocharge, Q, related to the surface band occupancy. A novel understanding of the (3 x 3)-1U ("1 up, 2 down") and 2U ("2 up, 1 down") distortions of Sn/Ge(111) is obtained by a theoretical study of the phase diagram under strain. Positive strain keeps the unstrained value Q=3 but removes distortions. Negative strain attracts pseudocharge from the valence band causing first a (3 x 3)-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a (sqrt[3] x sqrt[3])-3U ("all up") state with Q=6. The possibility of a fluctuating phase in unstrained Sn/Si(111) is discussed.  相似文献   

11.
We present kinetic lattice Monte Carlo simulations of Ge deposition onto a reconstructed Si (1 0 0) surface. We account for the exchange of Ge with Si atoms in the substrate, considering two different exchange mechanisms: a dimer exchange mechanism whereby Ge–Ge dimers on the surface become intermixed with substrate Si atoms, and the exchange of Ge atoms below the surface to relieve misfit strain. We examine how Si–Ge exchange affects the interface between the materials when the growth simulations are done at different temperatures.  相似文献   

12.
A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.  相似文献   

13.
本文用光致发光(PL)光谱对Si0.87Ge0.13/Si异质结的缺陷进行了研究。对PL光谱中与SiGe外延层应变驰豫产生的失配位错相关的D-Band进行了分析,发现应变驰豫同时在SiGe层和Si衬底中诱生了位错。由于在PL光谱中观察到了D1而没有观察到D2,因此D1,D2很可能并不对应于相同的位错。通过进一步的分析,我们推测引起SiGe/Si异质结的PL光谱中D-Band的位错的微观结构很可能和Si-Si相关。  相似文献   

14.
By using scanning tunneling microscopy we found that the surface reconstruction of Ge/Si(001) epilayers evolves from (M x N) to (2 x N), and eventually to (2 x 1), during exposure to a Si flux. This sequence appears to be just the inverse of that observed during the growth of Ge or SiGe alloys on Si(001). However, molecular dynamics simulations supported by ab initio calculations allow us to interpret this morphological evolution in terms of Si migration through the epilayer and complex Si-Ge intermixing below the top Ge layer.  相似文献   

15.
Diffusion coefficients and activation energies have been determined for Ge diffusion in strain-relaxed Si(1)-(x)Ge(x) with x = 0.00, 0.10, 0.20, 0.30, 0.40, and 0.50. The activation energy drops from 4.7 eV in Si and Si(0.90)Ge(0.10) to 3.2 eV at x = 0.50. This value compares with the literature value for Ge self-diffusion in Ge, suggesting Ge-like diffusion already at x approximately equal to 0.5. The effect of strain on the diffusion was also studied showing a decrease in diffusion coefficient and an increase in activation energy upon going from compressive over relaxed to tensile strain.  相似文献   

16.
Alternating deposition of Ge and Si in the step-flow growth regime using Bi acting as a surfactant can lead to a spontaneous formation of one atomic layer deep pits in the area of surface covered by Ge. During Si growth Ge atoms of the epitaxial 2D Ge layer move to Si step edges where stronger bonds with Si atoms are formed. Appropriate growth conditions can suppress or enhance the pit formation effect and consequently a new type of self-organized nanostructures can be formed.  相似文献   

17.
Sb induces on Ge(113) a c(2 x 2) reconstruction in which Sb breaks one Ge-Ge bond and occupies an interstitial site, in contrast to Sb adsorption on other Si or Ge surfaces. Sb saturates the three dangling bonds per unit cell of the (113) surface inducing a large strain which is released by occupation of the interstitial site. Two neighboring Sb at interstitial sites form a dimer. The structure has been determined by x-ray diffraction, applying direct methods, and ab initio density-functional-theory calculations. The adsorption geometry and the high binding energy lead one to expect that Sb cannot be used as a surfactant for the growth of Si/Ge layers on the (113) surface.  相似文献   

18.
利用掠入射荧光X射线吸收精细结构(XAFS)方法研究了在400℃的温度下分子束外延生长的Si/Gen/Si(001)异质结薄膜(n=1,2,4和8个原子层)中Ge原子的局域环境结构.结果表明,在1至2个Ge原子层(ML)生长厚度的异质结薄膜中,Ge原子的第一近邻配位主要是Si原子.随着Ge原子层厚度增加到4ML,Ge原子的最近邻配位壳层中的Ge-Ge配位的平均配位数增加到1.3.当Ge原子层厚度增加到8ML时,第一配位壳层中的Ge-Ge配位占的比例只有55%.这表明在400℃的生长条件下,Ge原子有很强的迁移到Si覆盖层的能力.随着Ge层厚度从1 增加到2,4和8ML,Ge原子迁移到Si覆盖层的量由0.5ML分别增加到1.5,2.0和3.0ML.认为在覆盖Si过程中Ge原子的迁移主要是通过产生Ge原子表面偏析来降低表面能和Ge层的应变能. 关键词: XAFS n/Si(001)异质膜')" href="#">Si/Gen/Si(001)异质膜 迁移效应  相似文献   

19.
Ab initio total energy methods are used to investigate the effects on a Ge(1 1 1)-5 × 5 surface of the lateral compressive stress that would be due to a Si substrate, and the effects of intermixing at the interface with the substrate. The effects of stress due to the lattice mismatch between Si and Ge are studied on a Ge slab by changing the lattice constant in the surface plane from that of experimental bulk diamond Ge to that of Si. When this is done the height difference of the Ge adatoms in the faulted half-cell from those in the unfaulted half is accentuated. Effects on the Ge surface due to the presence of the Si-Ge interface were studied using a thin Ge layer on a Si substrate. The presence of the substrate leads to corrugations with significant height differences appearing among the faulted adatoms. The energetics of intermixing were investigated for Si-Ge single atom interchanges. Additional corrugations resulted from the shortened bondlengths due to the Si impurity in the wetting layer.  相似文献   

20.
A hypothesis of perpendicular dimer row formation along three-bilayer (3 BL) step was suggested. The hypothesis, explains the stability of 3 BL steps on the vicinal Si(1 1 1) surface deflected in direction as well as the limitation of Ge and Si island height by 3 BL at the initial nucleation stages on Si(1 1 1) surface. The detailed examinations of STM images of 3 BL steps were carried out. New peculiarities of atomic structure of 3 BL single step on Si(1 1 1) and 3 BL steps on Si(5 5 7) surfaces were revealed. The results of STM images examination verify the hypothesis of perpendicular dimer row formation along the boundary of the 3 BL step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号