首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Hexagonal single crystals of europium trifluoromethanesulfonate nonahydrate (EuTFMS) have been prepared. The paramagnetic susceptibility perpendicular to the symmetry axis (c-axis, χ) and the principal magnetic anisotropy (Δχ=χ||χ) were measured in the temperature range of 300-13 and 300-80 K, respectively. The paramagnetic susceptibility parallel to the c-axis (χ||) was calculated using the values of χ and Δχ. χ|| and χ increase slowly with decrease of temperature and below ∼93 K, χ is more or less constant. But χ|| levels off below ∼137 K. The calculated value of the effective magnetic moment (Peff) of Eu3+ in the crystalline environment of EuTFMS decreases with lowering of temperature. The Raman and Fourier transform infrared (FTIR) spectra of EuTFMS were recorded in the wavenumber range of 10-1800 and 370-6000 cm−1, respectively. A good theoretical simulation of the observed magnetic properties including the CF Stark energies of the ground term (7F) extracted from the Raman and FTIR spectra of Eu3+ in EuTFMS have been achieved using one electron crystal field (CF) analysis. The electronic specific heat and other relevant CF dependent hyperfine properties, viz, nuclear quadrupole splitting and hyperfine specific heat have been computed.  相似文献   

2.
Chromium(II) sulfide, Y2CrS4, prepared by a solid-state reaction of Y2S3 and CrS, showed an antiferromagnetic transition at 65 K. The neutron diffraction patterns at 10 and 90 K were both well refined with the space group Pca21. At 90 K, cell parameters were a=12.5518(13) Å, b=7.5245(8) Å, and c=12.4918(13) Å. At 10 K, magnetic peaks were observed, which could be indexed on the same unit cell. Magnetic moments of chromium ions were parallel to the b-axis and antiferromagnetically ordered in each set of the 4a sites.  相似文献   

3.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

4.
Monoclinic single crystals of Ho2GeO5 were grown by a flux technique. The molar principal susceptibilities (χ1 and χ3) have been measured in the temperature range 300–13.5 K. The principal magnetic anisotropies (χ1χ2,χ2χ3 and χ1χ3) are obtained from the measured anisotropies in different modes of suspensions (b-axis vertical, c-axis vertical and (1 0 0) plane horizontal) of the crystal. The molar principal susceptibility (χ2) is obtained from the observed values of the principal anisotropies. The observed principal susceptibilities together with their anisotropies are explained by invoking the crystal field interaction of the Ho3+ ion with its diamagnetic neighbors in non-axial symmetry. The molar susceptibilities are correlated to the ionic values by finding out the proper orientation of the principal molar susceptibilities, i.e., crystal susceptibilities with respect to that of the ionic susceptibilities (Kx, Ky and Kz). The electronic heat capacities are calculated from the crystal field analysis showing Schottky type anomalies.  相似文献   

5.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

6.
Magnetic and EPR data have been collected for complex [Cu(L-Arg)2](NO3)2·3H2O (Arg=arginine). Magnetic susceptibility χ in the temperature range 2-160 K, and a magnetization isotherm at T=2.29(1) K with magnetic fields between 0 and 9 T were measured. The observed variation of χT with T indicates predominant antiferromagnetic interactions between Cu(II) ions coupled in 1D chains along the b axis. Fitting a molecular field model to the susceptibility data allows to evaluate g=2.10(1) for the average g-factor and J=−0.42(6) cm−1 for the nearest neighbor exchange coupling (defined as Hex=-∑JijSi·Sj). This coupling is assigned to syn-anti equatorial-apical carboxylate bridges connecting Cu(II) ion neighbors at 5.682 Å, with a total bond length of 6.989 Å and is consistent with the magnetization isotherm results. It is discussed and compared with couplings observed in other compounds with similar exchange bridges. EPR spectra at 9.77 were obtained in powder samples and at 9.77 and at 34.1 GHz in the three orthogonal planes of single crystals. At both microwave frequencies, and for all magnetic field orientations a single signal arising from the collapse due to exchange interaction of resonances corresponding to two rotated Cu(II) sites is observed. From the EPR results the molecular g-tensors corresponding to the two copper sites in the unit cell were evaluated, allowing an estimated lower limit |J |>0.1 cm−1 for the exchange interaction between Cu(II) neighbors, consistent with the magnetic measurements. The observed angular variation of the line width is attributed to dipolar coupling between Cu(II) ions in the lattice.  相似文献   

7.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

8.
In this work, two d-d transition spectra and four EPR parameters g, g, A, A of K2PdCl4/Cu2+ are uniformly interpreted based on Zhao's crystal-field model. The calculation result is in good agreement with the experiment findings. The ligand spin-orbit coupling is neglected on the calculation, which is consistent with the ab initio result by Hillier et al. [J. Am. Chem. Soc. 98 (1976) 95]  相似文献   

9.
The local lattice structure and EPR parameters (D, g, g) have been studied systematically on the basis of the complete energy matrix for a d3 configuration ion in a trigonal ligand field. By simulating the calculated optical and EPR spectra data to the experimental results, the local distortion parameters (ΔR, Δθ) are determined for V2+ ions in CdCl2 and CsMgCl3 crystals, respectively. The results show that the local lattice structure of CdCl2:V2+ system exhibits a compression distortion (ΔR=−0.0868 Å) while that of CsMgCl3:V2+ system exists an elongation distortion (ΔR=0.0165 Å). The different distortion may be ascribed to the fact that the radius of V2+ ion is smaller than that of Cd2+ ion or larger than that of Mg2+ ion. Moreover, the relationships between EPR parameter D and local structure parameters (R, θ) as well as the orbital reduction factor k and gfactors (g, g) are discussed.  相似文献   

10.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

11.
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K.  相似文献   

12.
Magnetic susceptibility of powder Er2Ti2O7 (ErT) is measured between 300 K and 80 K. shows a Curie-Weiss (CW) type behaviour with   ErTiO3.5 and . A crystal field (CF) analysis of our experimental data, g-values (g=0.27 and g=7.8) and the positions of two CF levels (reported earlier from an inelastic neutron scattering study) provide CF parameters and CF levels of the ground 4I15/2 and excited multiplets of ErT. The theoretical follows a CW-type behaviour, with . Single-ion magnetic anisotropy (χχ) is 9500×10−6 emu/mol ErTiO3.5 at 300 K, which increases by ∼54 times at 10 K and ErT resembles an XY planar system. It can be inferred from CF analysis that the earlier observed change of from −13 K to −22 K below 50 K is not due to the CF effect. Nuclear hyperfine (HF) levels of 167ErT and 166ErT are calculated and the theoretical curve of vs. T (K) for T<TN matches the observed results. Mössbauer lines expected for 166ErT are also predicted.  相似文献   

13.
Tb0.75Y0.25Co3B2 was studied as a function of temperature by neutron powder diffraction, ac susceptibility and SQUID magnetization measurements. The solid solution, which is of hexagonal symmetry and is paramagnetic at 300 K, undergoes a magnetic Co–Co ordering transition at ∼150 K, and a second magnetic Tb–Tb ordering transition at ∼17 K. The latter induces a spin-reorientation transition, in which the magnetic axis rotates from the c-axis toward the basal plane. The component of the magnetic axis, which is perpendicular to c, leads to a crystal symmetry reduction from hexagonal to monoclinic. The observed magnitude of the magnetic moment of the Tb ion is 1.5 μB, unusually small relative to the free ion and parent compound (TbCo3B2) values. These magnetic and crystal properties are discussed and compared with what was previously published for the parent compound.  相似文献   

14.
We have investigated the magnetic behavior of Ho5Sb3 compound (Mn5Si3-type, hexagonal; a=0.8865(1) nm, c=0.6232(1) nm, as derived from X-ray Guinier powder pattern) by using the techniques of magnetization, electrical resistivity, heat capacity and neutron diffraction. We find that Ho5Sb3 exhibits a ferrimagnetic type (Ferrimagnet I) ordering below 60 K with propagation vectors K0=[0, 0, 1] and K1=[±Kx, 0, 0]. Below 40 K, the thermal variation of magnetic reflections and the appearance of an additional magnetic component with propagation vector K2=[0, 1/2, 0] show the onset of an antiferromagnetic type of ordering in the magnetic structure; which evolves into yet another ferrimagnetic structure (Ferrimagnet II) as the temperature is lowered down to 2 K. The magnetic moments of the Ho atoms at the (4d) and (6g) sites with magnitudes of nearly 7.4 and 6.3 μB at 2 K, respectively, are inclined approximately at 70° to the c-axis.  相似文献   

15.
The spin-Hamiltonian parameters (g factors g, g and hyperfine structure constants 143A, 143A, 145A and 145A) of the tetragonal Nd3+ center in the low-temperature (T≈4.2 K) tetragonal phase of SrTiO3 are calculated from a diagonalization (of energy matrix) method. In the method, the Zeeman and hyperfine interaction terms are attached to the conventional Hamiltonian and a 52×52 energy matrix concerning the ground term 4HJ (J=9/2, 11/2, 13/2, 15/2) is constructed. The Nd3+ center is attributed to Nd3+ occupying the 12-fold coordinated Sr2+ site in SrTiO3. Differing from the defect model assumed in the previous paper that the tetragonal distortion of this Nd3+ center is due to the association of one interstitial oxygen ion at a nearest neighborhood of Nd3+ and the Nd3+ displacement Δz along C4 axis, we suggest that it is due to the distortion of SrTiO3 lattice in the tetragonal phase. The calculated g factors g and g show good agreement with the experimental values, suggesting that our defect model of Nd3+ center in SrTiO3 is reasonable. The experimental hyperfine structure constants were not reported and so our calculated results remain to be checked by EPR experiment.  相似文献   

16.
Two sets of crystal field (CF) parameters have been proposed for DyFe2Si2, none of which could provide a simultaneous explanation of the available experimental data, particularly at low temperatures (below 100 K). The set derived from magnetic studies could not even explain the thermal variation of the magnetic specific heat reported in the same work. Although the set of CF parameters, obtained from a fit to the Mossbauer spectra, could provide a fairly good explanation of the thermal variation of the magnetic susceptibilities along the c-axis, it could not explain the observed thermal variation of other reported experimental findings. In the present work, an appraisal of the CF parameters proposed earlier has been done and a set of CF parameters has been derived, which provide a simultaneous explanation of all the available experimental data. The effect of substitution of Ge for Si on the magnetic properties and the magnetic specific heat of DyFe2Si2 has been studied in the framework of one electron crystal field model. The inelastic neutron scattering studies and EPR measurements are required to check the predicted Stark energies and the paramagnetic resonance g-values.  相似文献   

17.
New triethylammonium salts: [(C2H5)3NH]SbCl6 (TCA) and [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl (TCAT) have been synthesized. The compounds crystallise in monoclinic symmetry: space groups P21/n and P21/c, for TCA at 293 K and TCAT at 100 K, respectively. The crystal structure of [(C2H5)3NH]SbCl6 consists of discrete ionic pairs—triethylammonium cations and hexachloroantimonate anions—linked via the bifurcated N-H?Cl hydrogen bonds. The crystal structure of [(C2H5)3NH]SbCl6·1/2[(C2H5)3NH]Cl is composed of three symmetrically independent triethylammonium cations, chlorine anion and two symmetrically independent hexachloroantimonate anions. TCA undergoes a structural phase transition at 336 K (on heating) into the orthorhombic C222 space group, whereas TCAT reveals a structural phase transition at 332 K. The phase transitions are of the first order type. TCA shows a ferroelastic domain structure below 336 K. Differential scanning calorimetry, dilatometric, dielectric dispersion and Raman scattering measurements have been used to study the phase transition mechanisms in these triethylammonium salts.  相似文献   

18.
Magnetic susceptibility and electrical resistivity of α-Gd2S3 with an orthorhombic structure (space group: Pnma) have been measured for powder and single-crystal samples. While the magnetic susceptibility of powder sample exhibits a broad peak having a maximum at 4.2 K, the susceptibility for a single crystal with an applied magnetic field along the b-axis demonstrates a sharp drop below 10 K. Nevertheless, the susceptibility with the field perpendicular to the b-axis keeps increasing with decreasing temperature even below 10 K. The electrical resistivity ρ for the powder sample of 4.2×103 Ω cm around room temperature increases with decreasing temperature and shows a slight discontinuity at about 65 K. In both regions above and below 65 K, is proportional to T−1/4 with respective coefficients, which is associated with Mott variable-range hopping conductivity. The resistivity of a single crystal along the b-axis is considerably smaller than the value for the powder sample as 0.35 Ω cm at room temperature, and its temperature dependence is fairly weak. While cooling, the resistivity first decreases down to 240 K and then keeps the value independent of the temperature down to 140 K, and subsequently rises gently below 140 K.  相似文献   

19.
Crystal structure of Rb3D(SeO4)2 has been investigated at 25 K (below the transition temperature Tc=95.4 K) by single-crystal neutron diffraction. Accompanying the transition, the SeO4 groups, which are all equivalent in the phase above the transition (space group A2/a), split into eight nonequivalent groups in a superlattice (a×2b×2c, space group A2) in the low-temperature phase. Based on the D atom positions obtained, each of the SeO4 groups was identified to be in the state closer to a HSeO4 ion or to a SeO42− ion and the dipole arrangement of SeO4-D-SeO4 dimer was revealed. This dipole arrangement has ‘ferri’ structure along the polar b-axis, but ‘antiferro’ structure in the plane perpendicular to the b-axis. These results are consistent with the characteristics found in the earlier dielectric measurements.  相似文献   

20.
In order to understand the structural behaviour of Cu(II) in a variety of ligand environments, single crystal electron paramagnetic resonance studies of Cu(II) doped in hexaaquazincdiaquabis(malonato)zincate [Zn(H2O)6][Zn(mal)2(H2O)2] are carried out at 300 K. Angular variation of copper hyperfine lines in three orthogonal planes shows the presence of single site, with spin Hamiltonian parameters as gxx=2.034, gyy=2.159, gzz=2.388, Axx=3.39 mT, Ayy=4.89 mT and Azz=13.72 mT. The g/A tensor direction cosines are compared with various Zn-O directions in the host lattice, which confirm that Cu(II) enters substitutionally in the lattice. The low value of Azz has been explained by considering admixture of d2x2y ground state with d2z excited state. EPR powder spectra at 300 and 77 K give identical spin Hamiltonian parameters (g=2.367, g=2.088, A=11.47 mT, A=2.63 mT). IR, UV-vis and powder XRD data confirm the structure and symmetry of the Cu(II) ion in the host lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号