首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
近场子空间聚焦的碰摩故障声发射定位方法   总被引:1,自引:0,他引:1       下载免费PDF全文
李晶  邓艾东  杨勇  赵力  郭如雪 《声学学报》2017,42(6):703-712
针对宽带多源声发射信号的相干、多模态和能量衰减快问题,提出一种近场多重相干信号子空间聚焦的定位算法用于碰摩故障声发射源的定位检测。首先,为滤除干扰模态波、减小频散效应,采用基于模态声发射传播特性分析的小波分解滤波方法,从碰摩初期的声发射信号中获取零阶模态波及波速用于定位计算;其次,为实现信号解相干,提出基于双边相关变换(TCT)的近场聚焦矩阵估计方法;最后,针对声发射信号的能量衰减快问题,利用近场基于特征分解的多重信号分类(N-MUSIC)的空间谱估计方法来实现声源的精确定位。理论分析和实验结果表明:该方法定位精度高、计算复杂度低、稳定性强,能有效识别多个相干碰摩声源。相比传统相干子空间算法(CSM),该方法减少了信号初值和聚焦频点的计算量,对双声源的分辨概率较现有修正近场多重信号分类算法提高了17%,是一种有效的碰摩故障源检测方法。   相似文献   

2.
火箭发射的次声信号分析*   总被引:1,自引:0,他引:1       下载免费PDF全文
在距离发射点20km和230km的两个阵列上,记录了我国一次火箭发射产生的次声波。从信号中识别出点火与声爆事件,观察到火箭在飞行中产生持续的次声波,以及声爆前后明显能量特征上的变化,观测到完整的火箭发射和飞行过程中系列次声波。为了验证采集信号中包含声爆事件,使用Fisher检测估计方位角和视速度,计算结果与火箭飞行轨迹一致,并且声爆信号的预计到达时间和估计方位与实际的时间和方位角相符合。结合火箭速度变化的特征,给出了声爆前低频能量较弱现象的解释和火箭超声速后次声能量特征的变化,揭示了火箭产生次声波的机理,为火箭发射等目标的监测提供有益的借鉴和参考。  相似文献   

3.
 采用SJZ-30和GSJ-15型高速扫描相机,对端面点起爆、侧边点起爆和中心点起爆方式下,HLZY-1含铝炸药水中爆炸近场冲击波传播过程进行了实验观测,通过数字化方法得到了炸药近场冲击波沿狭缝方向的扫描曲线和冲击波压力变化曲线。研究表明,起爆方式对炸药水中爆炸初始冲击波峰值压力以及近场冲击波峰值压力的衰减有重要的影响。研究结果可以为水中兵器战斗部的设计以及毁伤效能评估提供参考。  相似文献   

4.
基于近场声压传感的结构声辐射有源控制   总被引:14,自引:4,他引:10  
为了解决有源声学结构中误差信息的传感问题,提出利用近场声压估算结构声辐功率的方法。首先推导了基于近场声压的声辐射功率计算公式,然后针对单频和宽带辐射噪声,提出了不同的有源控制目标函数,推粤了相应的计算有源控制效果的公式,并借助计算机仿真研究了影响有源控制效果的各种因素。最后探讨了实际条件下实现有源控制误差信息传感的各种方法。结果表明:有限阶声压辐射模态和近场均方声压都可以作为自适应声学结构的目标函数。  相似文献   

5.
针对水下多爆源起爆的实战背景,开展了两点同时起爆条件下冲击波载荷特性的数值模拟研究。基于自研的多相可压缩流体计算程序,采用高精度的数值格式对流体控制方程进行离散求解。将数值模型计算的自由场水下爆炸的结果与理论结果比较,初步验证了数值模型计算的准确性与可靠性。利用该模型计算了典型工况下水下两点起爆工况,计算结果表明:两爆源对称面上压力相比单爆源线性叠加后的峰值压力增加12%~16%;两爆源垂直截面之间的压力存在双峰现象;而对于两垂直截面之外的测点压力也存在双峰现象,第1个峰值压力与单爆源线性叠加的峰值相等,第2个峰值压力要远低于单爆源线性叠加的峰值,峰值压力下降幅度可高达30%左右。研究结果能够为水下武器防护设计与威胁评估提供参考。  相似文献   

6.
赵剑强  赵倩  陈莹  杨文娟  胡博  刘珺  吴沛 《应用声学》2018,37(4):582-586
基于理论推导和计算,给出了公路声屏障声学设计中,在考虑地面附加衰减情况下计算插入损失的方法。该方法综合考虑了有限长线声源无限长声屏障绕射声衰减量、有限长线声源地面衰减量及遮蔽角对插入损失的影响。通过与《声屏障声学设计和测量规范》(HJ/T90-2004)的计算结果的对比,验证了本文所给方法的精确性及可行性,并对规范所给地面衰减修正量进行了商榷。最后,给出了当预测点位于有限长路段中央法线上时,通过计算线声源地面衰减量得到计算插入损失所需参数值,再计算插入损失的简便方法。本研究为存在地面附加衰减情况下有限长声屏障插入损失计算提供了一个新的参考方法。  相似文献   

7.
分析和研究了频率对热声制冷机声压、温差和声功的影响 ;使用网络模型计算的结果与实验结果相吻合 ;该研究也是对网络模拟和声功测量方法的验证。  相似文献   

8.
自来水铸铁管道泄漏声信号频率特征研究   总被引:9,自引:0,他引:9       下载免费PDF全文
杨进  文玉梅  李平 《应用声学》2006,25(1):30-37
针对基于声发射技术的自来水管网泄漏检测定位方法,研究因泄漏而形成的声信号频率分布及不同泄漏量对频率分布的影响。实际泄漏检测时,通常采用互相关法估计泄漏信号到达不同传感器间的时间延迟实现漏点定位,因此,借助互相关分析法研究了管道的不同口径及泄漏信号传播距离对泄漏信号频率分布的影响。同时,泄漏声信号的传播不可避免要经过管道间的接口,因此分析了两种管道接口对信号频率成分的影响。进而为设计合理的管道泄漏检测过程提供依据,并为泄漏声信号形成及多种因素对泄漏声信号特征产生影响的机制研究奠定基础。  相似文献   

9.
声光子晶体是一种同时具有光子和声子带隙的人工微结构,因此可实现对光和声的同时操控,在腔光力学及声光功能器件领域展现了广阔的应用前景。本文基于有限元数值计算方法,研究了声光子晶体微腔的光声传感特性。研究结果表明,通过简单地引入点缺陷,声光子晶体不仅能很好地实现对光和声场的同时局域,而且能同时获得光及声信号的高灵敏度传感,光、声传感灵敏度分别达到了277nm/RIU,2.75MHz/ms-1。由于光和声两个物理量能同时并独立地实现高灵敏度传感,因此该种传感器能应用于更为复杂的生化传感。  相似文献   

10.
振动声成像是超声成像的一种重要形式,它可以得到包含共焦区组织的弹性信息和声衰减信息的信号,将接收到的信号用于成像即可获得反映组织特性的图像。该文对大张角共焦换能器作用下振动声成像中声辐射力和切变位移进行了理论计算和数值模拟,并通过改变张角变化及频率大小研究其对声辐射力和切变位移的影响。这项工作为大张角共焦换能器在振动声成像中的应用提供了理论支持。  相似文献   

11.
Based on the analysis of various aspects of creating a supersonic transport aircraft of the second generation, the necessity of developing unconventional active methods of sonic boom level reduction is demonstrated. Surface cooling is shown to exert a significant effect on formation of the disturbed flow structure up to large distances from the body by an example of a supersonic flow around a body of revolution. A method of reducing the intensity of the intermediate shock wave and excess pressure momentum near the body is proposed. This method allows the length of the reduced (by 50%) sonic boom level to be increased and the bow shock wave intensity in the far zone to be reduced by 12%. A possibility of controlling the process of formation of wave structures, such as hanging pressure shocks arising near the aircraft surface, is demonstrated. The action of the cryogenic mechanism is explained.  相似文献   

12.
The pressure variations inside a room of plaster-wood construction subjected to sonic boom loadings were investigated both analytically and experimentally to study the problems of dynamic structural response. The N-wave pressure signatures were generated in the UTIAS (University of Toronto Institute for Aerospace Studies) Travelling Wave Horn-Type Sonic Boom Simulator. The room overpressures in some cases were found to be twice as great as that in the incident sonic boom. The analysis and experimental data can be useful in assessing structural damage caused by supersonic aircraft overfligths.  相似文献   

13.
The last decade has seen a revival of sonic boom research, a direct result of the projected market for a new breed of supersonic passenger aircraft, its design, and its operation. One area of the research involves sonic boom penetration into the ocean, one concern being the possible disturbance of marine mammals from the noise generated by proposed high-speed civil transport (HSCT) flyovers. Although theory is available to predict underwater sound levels due to a sonic boom hitting a homogeneous ocean with a flat surface, theory for a realistic ocean, one with a wavy surface and bubbles near the surface, is missing and will be presented in this paper. First, reviews are given of a computational method to calculate the underwater pressure field and the effects of a simple wavy ocean surface on the impinging sonic boom. Second, effects are described for the implementation of three additional conditions: a sonic boom/ocean "wavelength" comparison, complex ocean surfaces, and bubbles near the ocean surface. Overall, results from the model suggest that the realistic ocean features affect the penetrating proposed HSCT sonic booms by modifying the underwater sound-pressure levels only about 1 decibel or less.  相似文献   

14.
Results of numerical and experimental investigations of the sonic boom parameters for two configurations of civil supersonic transport are presented. Numerical modelling is performed by a combined method based on calculating the spatial flow in the near zone of the aircraft configuration and subsequent determination of disturbed flow parameters at large distances from the examined model. Numerical results are compared with experimental sonic boom parameters measured in the near zone and with results of their recalculation to large distances within the framework of the quasi-linear theory. This validation allows the degree of adequacy of the inviscid Euler model for solving the posed problem to be determined. Reasons for certain disagreement between the calculated and experimental data are discussed. The analysis confirms the possibility of attenuating the sonic boom generated by supersonic transport with an unconventional configuration based on a tandem arrangement of two wings on the fuselage.  相似文献   

15.
Six sonic booms, generated by F-4 aircraft under steady flight at a range of altitudes (610-6100 m) and Mach numbers (1.07-1.26), were measured just above the air/sea interface, and at five depths in the water column. The measurements were made with a vertical hydrophone array suspended from a small spar buoy at the sea surface, and telemetered to a nearby research vessel. The sonic boom pressure amplitude decays exponentially with depth, and the signal fades into the ambient noise field by 30-50 m, depending on the strength of the boom at the sea surface. Low-frequency components of the boom waveform penetrate significantly deeper than high frequencies. Frequencies greater than 20 Hz are difficult to observe at depths greater than about 10 m. Underwater sonic boom pressure measurements exhibit excellent agreement with predictions from analytical theory, despite the assumption of a flat air/sea interface. Significant scattering of the sonic boom signal by the rough ocean surface is not detected. Real ocean conditions appear to exert a negligible effect on the penetration of sonic booms into the ocean unless steady vehicle speeds exceed Mach 3, when the boom incidence angle is sufficient to cause scattering on realistic open ocean surfaces.  相似文献   

16.
An accelerating supersonic aircraft produces noisy superboom due to acoustical shock wave focusing at a fold caustic. This phenomenon is modeled by the mixed-type nonlinear Tricomi equation. An innovative experimental simulation in a water tank has been carried out, with perfect similitude to sonic boom in air. In the linear regime, the canonical Airy function is reproduced using the inverse filter technique. In the nonlinear regime (weak shock waves), the experiment demonstrates the key role of nonlinear effects: they limit the field amplitude, distort the sonic line, and strongly alter the phase of the signal, in agreement with numerical simulations.  相似文献   

17.
Procedures are developed for calculating pressure signatures and ray patterns of sonic booms with special attention to focusing effects in general manoeuvres. The format employs a model atmosphere which is piecewise linear in wind and sound speeds, and piece-wise constant in wind direction. Expressions for ray trajectories and ray-tube areas are obtained in closed form for an aircraft in arbitrary manoeuvres. A mathematical formalism is developed for identifying the focusing ray, leading to a direct and accurate determination of the caustic surface ground intercept. The present algorithms complement those of Hayes to form the basis for a comprehensive computer program for predicting sonic boom properties. There appears to be a ten-fold reduction in computing time as compared with the Hayes-Haefeli program.  相似文献   

18.
The influence of the planetary boundary layer on the sonic boom received at the ground level is known since the 1960s to be of major importance. Sonic boom propagation in a turbulent medium is characterized by an increase of the mean rise time and a huge variability. An experiment is conducted at a 1:100,000 scale in water to investigate ultrasonic shock wave interaction with a single heterogeneity. The experiment shows a very good scaling with sonic boom, concerning the size of the heterogeneities, the wave amplitude, and the rise time of the incident wave. The wave front folding associated with local focusing, and its link to the increase of the rise time, are evidenced by the experiment. The observed amplification of the peak pressure (by a factor up to 2), and increase of the rise time (by up to about one magnitude order), are in qualitative agreement with sonic boom observations. A nonlinear parabolic model is compared favorably to the experiment on axis, though the paraxial approximation turns out less precise off axis. Simulations are finally used to discriminate between nonlinear and linear propagations, showing nonlinearities affect mostly the higher harmonics that are in the audible range for sonic booms.  相似文献   

19.
The design, operation, and performance of a sonic boom simulator, featuring a radically new dual-flap valve and electromechanical control system, are described. This new flap valve with its large maximum throat area (160 cm2) was designed to regulate the air flow from a low pressure reservoir (up to 0·2 atm overpressure) into the apex of a large pyramidal horn (25 m long, 3 m × 3 m base), where the incoming low speed air flow (up to 150 m/s) produces a travelling simulated sonic boom or N-wave with relatively little superposed high frequency noise. As a consequence, the full scale simulated sonic boom is virtually free of superposed jet noise, a major advance over past work with such horn-type simulators. Additionally, an advanced gasdynamic analysis of the reservoir coupled with an advanced acoustic analysis of the wave motion in the horn is presented to predict the characteristics of the simulated sonic boom—wave form, amplitude, duration, and rise time. Predicted and measured overpressure signatures are shown to be in excellent agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号