首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C7H7 potential energy surface was studied from first principles to determine the benzyl radical decomposition mechanism. The investigated high temperature reaction pathway involves 15 accessible energy wells connected by 25 transition states. The analysis of the potential energy surface, performed determining kinetic constants of each elementary reaction using conventional transition state theory, evidenced that the reaction mechanism has as rate determining step the isomerization of the 1,3-cyclopentadiene, 5-vinyl radical to the 2-cyclopentene,5-ethenylidene radical and that the fastest reaction channel is dissociation to fulvenallene and hydrogen. This is in agreement with the literature evidences reporting that benzyl decomposes to hydrogen and a C7H6 species. The benzyl high-pressure decomposition rate constant estimated assuming equilibrium between the rate determining step transition state and benzyl is k1(T) = 1.44 × 1013T0.453exp(−38400/T) s−1, in good agreement with the literature data. As fulvenallene reactivity is mostly unknown, we investigated its reaction with hydrogen, which has been proposed in the literature as a possible decomposition route. The reaction proceeds fast both backward to form again benzyl and, if hydrogen adds to allene, forward toward the decomposition into the cyclopentadienyl radical and acetylene with high-pressure kinetic constants k2(T) = 8.82 × 108T1.20exp(1016/T) and k3(T) = 1.06 × 108T1.35exp(1716/T) cm3/mol/s, respectively. The computed rate constants were then inserted in a detailed kinetic mechanism and used to simulate shock tube literature experiments.  相似文献   

2.
Normal hexyl radicals generated from the decomposition of n-hexyl iodide have been decomposed in single pulse shock tube experiments. All the products arising from the decomposition of 1-hexyl (the initial reactant) and 2-hexyl and 3-hexyl (isomerization products) have been detected in the temperature range 890-1020 K and 1.5-5 bar pressures. We find that
  相似文献   

3.
Natural germanium and selenium consist of, respectively, five and six stable isotopes. Several of these isotopes have considerable abundances and one should expect to observe the bands of at least six isotopic variants of germanium monoselenide (GeSe). In this paper, for the first time, the results of the high-resolution electronic spectrum of the main transition A1Π-X1Σ+ of the specific isotopomer 74Ge80Se, excited in a microwave discharge and recorded in the 33 500-26 000 cm−1 region using a Fourier transform spectrometer, is discussed. From the rotational analysis of 25 bands involving v″ = 0-12 and v′ = 0-7, accurate vibrational and rotational constants of the A1Π state are determined. The present study has revealed perturbations in the v′ = 6 and 7 levels of the A1Π state.  相似文献   

4.
The isomerization and decomposition reactions of 2-pentyl and 3-pentyl radicals have been studied in a single-pulse shock tube over a temperature range of 973–1121 K and pressures of 120–800 kPa. The results represent the first direct study of the alkene product branching ratio resulting from the kinetics of the competition between isomerization and beta C–C bond scission for a secondary straight-chain alkyl radical at high temperatures. Such species are representative of intermediates important in the combustion of typical hydrocarbon fuels. In the present work, a small quantity of precursor (~45 μL/L) is used to thermally generate H atoms in the presence of excess (E)-2-pentene, leading to the radicals of interest via addition of H to the double bond. Decomposition of the chemically activated pentyl radicals results in the stable olefin products ethene, propene, and 1-butene, which are detected in postshock gas chromatographic analyses utilizing flame-ionization and mass-spectrometric detection. It is shown that the olefin product ratios can be related to the isomerization and decomposition reactions of the 2-pentyl and 3-pentyl radicals and the results are consistent with the existence of distinct non-overlapping cracking patterns for the two radicals. The data are compared with predictions made on the basis of a model developed from experiments on the decomposition of thermal (i.e. not chemically activated) 1-pentyl radicals. Good agreement is observed. In conjunction with an RRKM/Master Equation analysis, the results for 2-pentyl and 3-pentyl radicals are projected over a wide range of temperatures. In addition, the rate constants for addition of H atoms to the alternate double bond positions of (E)-2-pentene are derived relative to a standard reaction and absolute rate constants for these processes are reported.  相似文献   

5.
Rate constants for H-atom abstractions by OH radicals from a series of alkanes (propane, n-butane, i-butane and neo-pentane) have been measured at high temperatures with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The experiments represent the first direct measurements of these rate constants at T > 1000 K and span a wide T-range, 797-1259 K.The present work utilized 80 optical passes corresponding to a total path length of ∼7 m. As a result of this increased path length, the high [OH] detection sensitivity permitted pseudo-first-order analysis for unambiguously measuring the total rate constants. The experimental rate constants can be represented in Arrhenius form as,
  相似文献   

6.
The kinetics of the CH3 + HO2 bimolecular reaction and the thermal decomposition of CH3OOH are studied theoretically. Direct variable reaction coordinate transition state theory (VRC-TST), coupled with high level multireference electronic structure calculations, is used to compute capture rates for the CH3 + HO2 reaction and to characterize the transition state of the barrierless CH3O + OH product channel. The CH2O + H2O product channel and the CH3 + HO2 → CH4 + O2 reaction are treated using variational transition state theory and the harmonic oscillator and rigid rotor approximations. Pressure dependence and product branching in the bimolecular and decomposition reactions are modeled using master equation simulations. The predicted rate coefficients for the major products channels of the bimolecular reaction, CH3O + OH and CH4 + O2, are found to be in excellent agreement with values obtained in two recent modeling studies. The present calculations are also used to obtain rate coefficients for the CH3O + OH association/decomposition reaction.  相似文献   

7.
Polycrystalline Fe100−xGax (19?x?23) films were grown on Si(1 0 0) substrates at different partial pressures of sputtering gas ranging from 3 to 7 μbar. Microstructural, magnetic and magnetostrictive properties were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and magneto-optic Kerr effect (MOKE) magnetometry respectively. X-ray diffraction showed that all films have the body-centered cubic (bcc) Fe-Ga phase with the 〈1 1 0〉 direction out of the film plane. Magnetic characterization of the films showed that the films prepared at 3 μbar had weak uniaxial anisotropy whereas films grown at Ar pressures in the range 4-7 μbar were magnetically isotropic. The effective saturation magnetostriction constants (λeff) of the films were measured using the Villari effect. It was found that effective saturation magnetostriction constants were almost constant over the Ga composition range achieved by varying the sputtering pressure. The measured effective magnetostriction constants fit closely to the calculated saturation magnetostriction constants of 〈1 1 0〉 textured polycrystalline films with the 〈1 1 0〉 directions slightly canted with respect to the normal to the sample surface. It was found that a high pressure of the sputtering gas effected the magnetic softness of the films. The saturation field increased and remanence ratio decreased with increase in pressure.  相似文献   

8.
We consider as an example the two-pion decay of the ρ meson, the 3 S 1 q $ \bar q $ \bar q state of the constituent quarks—the decay being determined by the transition q $ \bar q $ \bar q → ππ contains information about confinement interactions. One can specify in this decay two types of transitions: (i) the bremsstrahlung radiation of a pion q → q + π (or $ \bar q $ \bar q → $ \bar q $ \bar q + π) with a subsequent fusion q $ \bar q $ \bar q → π, and (ii) the direct transition q $ \bar q $ \bar q → ππ. We demonstrate how in the amplitudes of the corresponding transitions the quark singularities have to disappear, i.e., what is the way the quark confinement at relatively short distances can be realized. We calculate and estimate the contributions of processes with bremsstrahlung radiation of the pion and of the direct transition q $ \bar q $ \bar q → ππ. The estimates demonstrate that the processes involving the direct transition q $ \bar q $ \bar q → ππ are necessary, but they cannot be determined unambiguously by the decay ρ(775) → ππ. We conclude that for the determination of the q $ \bar q $ \bar q → ππ transition more complete data on the resonance decays into the ππ channels are needed than those available at the moment.  相似文献   

9.
The rotational spectra of 28SiF2, 29SiF2, and 30SiF2 in their ground vibrational states, as well as those of 28SiF2 in the v1 = 1, v2 = 1, v3 = 1, and v2 = 2 excited states have been studied in selected frequency regions between 80 and 700 GHz. Transitions involving a large range of quantum numbers have been observed, so that precise rotational and quartic centrifugal distortion constants could be determined for each of the spectra investigated. In addition, the complete set of sextic distortion constants was also obtained for the most abundant isotopomer in its ground vibrational state. The quadratic and cubic force constants of silicon difluoride have been refined by a least-squares procedure using a larger and more precise set of data.  相似文献   

10.
The isomerization of 1-naphthylacetylene diluted in argon was studied behind reflected shock waves in a 2 in i.d. single pulse shock tube over the temperature range 1000-1250 K and overall densities of ∼3 × 10−5 mol/cm3. The only reaction product found in the post shock mixtures was acenaphthylene. The first order rate constant of the isomerization was found to be k = 2.08 × 1012 exp(−54.2 × 103/RT) s−1, where R is expressed in units of cal/K mol. Potential energy surfaces of the cyclization reaction 1-naphthylacetylene → acenaphthylene and the isomerization 1-naphthylacetylene → 2-naphthylacetylene were calculated using the Becke three-parameter hybrid method with Lee-Yang-Parr correlation functional approximation (B3LYP). Structure, energy and frequency calculations were carried out with the Dunning correlation consistent polarized double ζ (cc-pVDZ) basis set. The rate constant (k) for the 1-naphthylacetylene → acenaphthylene cyclization was calculated using transition state theory, the value obtained is k = 3.52 × 1012 exp(−55.9 × 103/RT) s−1, where R is expressed in units of cal/K mol. The agreement between the experiment and the calculations is very good. RRKM calculations were done to transfer k to the pressure of the single pulse shock tube experiments. In view of high temperature and the large molecule involved the deviation from k is very small. The isomerization 1-naphthylacetylene → 2-naphthylacetylene proceeds via the formation of an unstable intermediate 1,2-naphthalenocyclobutene and has a high barrier of ∼83.5 kcal/mol. In view of this high barrier, the isomerization cannot compete with the cyclization that proceeds with a barrier of ∼56 kcal/mol.  相似文献   

11.
We present high-pressure and high temperature studies of the synchrotron radiation-induced decomposition of powder secondary high explosives pentaerythritol tetranitrate (PETN) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using white beam synchrotron radiation at the 16 BM-B and 16 BM-D sectors of the HP-CAT beamline at the Advanced Photon Source. The radiation-induced decomposition rate TATB showed dramatic slowing with pressure up to 26.6 GPa (the highest pressure studied), implying a positive activation volume of the activated complex. The decomposition rate of PETN varied little with pressure up to 15.7 GPa (the highest pressure studied). Diffraction line intensities were measured as a function of time using energy-dispersive methods. By measuring the decomposition rate as a function of pressure and temperature, kinetic and other constants associated with the decomposition reactions were extracted.  相似文献   

12.
The laser-induced fluorescence (LIF) spectrum of jet-cooled CoF has been obtained in the wavelength region of 260-290 nm for the first time. Seventeen vibronic bands were observed and assigned to three types of transition from the ground state to upper states Ω′ = 3, 4, 5 by rotational analysis. A new vibrational transition with the 0-0 band at 34697.22 cm−1 has been assigned as the [34.7]3Γ5-X3Φ4 transition and effective equilibrium molecular constants for the upper state have been determined. In addition, lifetime measurements have been carried out for most of the bands under collision-free conditions. On the basis of the spectroscopic data and lifetime measurements, the electronic structures of these possible high-lying electronic states are discussed.  相似文献   

13.
The influence of the position of the double bond on the autoignition of linear alkenes has been investigated by modeling the behavior of the three isomers of linear hexene and those of linear heptene. Low-temperature kinetic mechanisms for the oxidation of these six alkenes have been obtained after some improvements made to the system EXGAS, for the automatic generation of mechanisms, which had been previously adapted to model the oxidation of 1-pentene and 1-hexene. Quantum mechanical calculations have shown that cis-trans conformations should be taken into account and that isomerizations of alkenyl and alkenyl peroxy radicals involving a transition state including a double bond could be neglected. The new mechanisms have been validated using experimental data obtained in two rapid compression machines between 600 and 900 K with a good prediction of cool flame and ignition delay times. The model reproduces well the decreasing reactivity at low temperature when going from 1- to 3-alkene. While the profiles of products are well reproduced for 1-hexene in a jet-stirred reactor above 780 K, more problems are encountered for the prediction of products in a rapid compression machine at 707 K, showing persisting problems in the understanding of the chemistry of the low-temperature oxidation of alkenes. Reaction rates analysis have been used to explain the difference of reactivity between the isomers of hexene.  相似文献   

14.
The emission spectrum of the B2Σ+-X2Σ+ system of CN has been observed at high-resolution using a Fourier transform spectrometer. The rotational structure of a large number of bands involving vibrational levels v = 0-15 of both electronic states has been analyzed, and improved spectroscopic constants have been determined by combining the microwave and infrared measurements from previous studies. Improved spectroscopic constants for vibrational levels up to v″ = 18 in the X2Σ+ state and v′ = 19 in the B2Σ+ state have been determined by combining the measurements of the 16-13, 18-17, 18-18, 19-15, and 19-18 bands of Douglas and Routly [Astrophys. J. Suppl. 1 (1955) 295-318] and 17-14 and 17-16 bands of Ito et al. [J. Chem. Phys. 96 (1992) 4195] with our data. The band constants obtained have been used to estimate equilibrium ground state constants for CN.  相似文献   

15.
The results of a comprehensive investigation of the rotational spectrum of lactic acid over the frequency region 171-318 GHz are reported. Some supersonic expansion measurements at 8-16 GHz have also been made. A complete set of octic level constants in the asymmetric rotor Hamiltonian has been determined for the ground vibrational state from a fit to over 1000 measured transition frequencies. Spectroscopic constants have also been determined for the first five excited states of the low frequency, 60 cm−1, torsional vibrational mode, and for four other vibrationally excited states. Vibrational states become rather crowded above 200 cm−1, with seven different states only in the next 100 cm−1, and almost all of the measured states in this energy region show evidence of perturbations. The analysis was carried out with the newly developed AABS software package for Assignment and Analysis of Broadband Spectra.  相似文献   

16.
The structural state of GaN epitaxial layers grown on r-plane sapphire through metal-organic vapor phase epitaxy has been investigated using X-ray diffraction. The interplanar spacings in two directions in the (11$ \bar 2 $ \bar 2 0) plane of the interface and in the direction perpendicular to it, as well as the diffraction peaks in the ϑ and ϑ-2ϑ scan modes in the Bragg and Laue geometries, are measured on double- and triple-crystal diffractometers. The intensity distribution maps for asymmetric Bragg reflections are constructed for two azimuthal positions of the sample. An analysis of the data obtained has demonstrated that the elastic strain is anisotropic and that the X-ray diffraction pattern parallel to the interface plane is broadened. The layers are contracted in the [1$ \bar 1 $ \bar 1 00] direction and unstrained in the [0001] direction. The broadening of the Bragg reflections in the [1$ \bar 1 $ \bar 1 00] direction is considerably larger than that in the [0001] direction. It is shown using the Williamson-Hall plots for the Bragg and Laue reflections that these broadenings are not related to different degrees of mosaicity but are determined by the local dilatations and misorientations around defects. The data obtained are analyzed, and the conclusions regarding the dislocation structure of the samples are drawn.  相似文献   

17.
Previous work involving the rotational spectrum of 2-aminopyridine was limited to the lower frequencies of 4-40 GHz with very few lines being assigned. This work extends this earlier study. Here we present a much more extensive measurement and assignment of the rotational spectrum of 2-aminopyridine in the frequency range of 75-110 GHz. The observed frequencies have been assigned to the ground (0+ state) and the first excited state in the inversion vibration (0 state). Measurements of these two states have been extended up to J=46. With the newly assigned lines, significantly improved rotational constants and all five centrifugal distortion constants have been obtained.  相似文献   

18.
High-resolution spectra of VO have been reinvestigated in the 12 000-31 000 cm−1 region. VO was produced in a vanadium hollow cathode lamp by discharging 1.5 Torr of Ar and the spectra were recorded using a Fourier transform spectrometer. The oxygen needed to produce VO was present in the system as an impurity. Three new bands observed in the 21 000-22 100 cm−1 region have been attributed to a new 2Δ-12Δ electronic transition of VO. Two bands, with origins near 21 044 and 22 038 cm−1, have been assigned as the 0-1 and 0-0 bands of the 2Δ3/2-12Δ3/2 sub-band while a weak band with an origin near 21 975 cm−1 has been assigned as the 0-0 band of the corresponding 2Δ5/2-12Δ5/2 sub-band. A rotational analysis of these sub-bands has been obtained and spectroscopic constants have been extracted. The 12Δ state is known from the previous analyses of the doublet transitions of VO in the near infrared. The present observation has allowed the determination of the vibrational interval ΔG1/2 and the equilibrium rotational constants for the 12Δ3/2 state.  相似文献   

19.
The analysis of the rotational spectrum of HNO3 has been extended to include the υ8 = υ9 = 1 state at 1205.7 cm−1 and the υ6 = υ7 = 1 state at 1223.4 cm−1. Based on 78-519 GHz data, the assignments in the 8191 vibrational state have been significantly expanded from the previously reported microwave measurements [T.M. Goyette, F.C. De Lucia, J. Mol. Spectrosc. 139 (1990) 241-243]. A new microwave analysis is also reported for the 6171 vibrational state. A simultaneous analysis takes into account the localized ΔKa = ±2 Fermi resonances between the vibrational states, describes the torsional splitting of 3.3 and 1.4 MHz for the 8191 and 6171 states respectively, and fits to experimental accuracy over 1500 rotational transition frequencies that extend up to J = 59. Infrared energy levels [A. Perrin, J.-M. Flaud, F. Keller, A. Goldman, R. D. Blatherwick, F. J. Murcray, C. P. Rinsland, J. Mol. Spectrosc. 194 (1999) 113-123] were also included in the analysis and fit to experimental accuracy. Measurement of strongly perturbed transitions in each vibrational state provide a determination of the band origin difference of 17.733184(17) cm−1. The rotational constants agree well with those predicted by vibrational-rotational constants of the fundamental modes. Furthermore, the analysis will provide a very accurate simulation of the infrared spectrum of HNO3 in the 8.3 μm region.  相似文献   

20.
The accurate and high-throughput generation of kinetic data for combustion detailed chemical kinetic models remains a challenge given the large size of these models. For large organic molecules, the majority of kinetic data of the kinetic models are estimated using quantitative structure activity relationships within reaction classes and reaction rate rules approaches. In this work, we question the limits of the rate rule approach for the isomerization reaction classes, using electronic structure calculations and reaction rate theories. Systematic calculations were performed to investigate the effect of the size and the degree of branching of alkyl radicals on the rate coefficients and their consequences on the rate rule approach. Our computed kinetic data show that when the size of alkyl group is increased, the rate coefficients remains close to each other. This allows the use of methyl as representative models of larger alkyl groups to investigate the influence of increasing the degree of branching. The computed rate coefficients for 1,3- and 1,4-H-atom shifts show that the increase of the branching level, with spectator methyl groups in the transition state cyclic structure can strongly increase the rate coefficients, up to several orders of magnitude. Consequently, a single rate rule is not feasible for any degree of branching of a reaction belonging to the same isomerization reaction class. As variation in rate coefficients are important, this would lead to an explosion of the number rate rules as a function of branching in 5-, 6-, and 7-membered cyclic transition states. A new approach is demonstrated and proposed where model transition states are tabulated, and methyl groups are assumed as alkyl groups and all combinations of substitutions in the model TSs, for a given reaction class, are included in a table with associated ab initio rate coefficients. The automation of the construction of such tables is possible and could be an interesting high-throughput / high-accuracy alternative to on-the-fly ab initio calculations of kinetic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号