首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
We have performed high-resolution angle-resolved photoemission spectroscopy on Fe-based superconductor LiFeAs (T(c)=18 K). We reveal multiple nodeless superconducting (SC) gaps with 2Δ/k(B)T(c) ratios varying from 2.8 to 6.4, depending on the Fermi surface (FS). We also succeeded in directly observing a gap anisotropy along the FS with magnitude up to ~30%. The anisotropy is fourfold symmetric with an antiphase between the hole and electron FSs, suggesting complex anisotropic interactions for the SC pairing. The observed momentum dependence of the SC gap offers an excellent opportunity to investigate the underlying pairing mechanism.  相似文献   

2.
Very recently, the new 6 K superconductor (SC) LiFeP, the first arsenic-free analog of the family of the so-called “111” FeAs SCs, was discovered. Here, based on first-principle FLAPW-GGA calculations, the band structure, density of states, Fermi surface topology, electron density distribution and effective atomic charges for the new SC LiFeP are investigated for the first time and discussed in comparison with isostructural and isoelectronic LiFeAs. In addition, the theoretical shapes of FeL X-ray emission spectra for LiFeP and LiFeAs are evaluated and compared with available experiments.  相似文献   

3.
High-precision measurements of magnetic penetration depth λ in clean single crystals of LiFeAs and LiFeP superconductors reveal contrasting behaviors. In LiFeAs the low-temperature λ(T) shows a flat dependence indicative of a fully gapped state, which is consistent with previous studies. In contrast, LiFeP exhibits a T-linear dependence of superfluid density infinity λ(-2), indicating a nodal superconducting order parameter. A systematic comparison of quasiparticle excitations in the 1111, 122, and 111 families of iron-pnictide superconductors implies that the nodal state is induced when the pnictogen height from the iron plane decreases below a threshold value of ~1.33 ?.  相似文献   

4.
The band structure of a new (16–18 K) superconductor LiFeAs, as a possible first representative of the third (the so-called 111) group of phases, which, along with the groups of four-component 1111 oxyarsenides LnOFeAs and three-component 122 arsenides AFe2As2, belong to the family of new high-temperature (26–56 K) FeAs superconductors, has been studied using the ab initio full-potential augmented-plane-wave method and the generalized-gradient approximation. The structure, energy bands, densities of state, Fermi surface, low-temperature electron specific heat γ, and molar Pauli magnetic susceptibility for LiFeAs are discussed and compared to similar data for the systems simulating the hole (Li0.5FeAs) and electron (LiCoAs) doping of LiFeAs.  相似文献   

5.
Using transmission electron microscopy, the anomalies in resistivity and magnetic susceptibility at ~262 K in IrTe2 are found to accompany the superlattice peaks with q[over q=(1/5,0,-1/5). The wave vector is consistent with our theoretical calculation for the Fermi surface nesting vector, indicating that the ~262 K transition is of the charge-orbital density wave (DW) type. We also discovered that both Pd intercalation and substitution induce bulk superconductivity with T(c) up to ~3 K, which competes with DW in a quantum critical pointlike manner.  相似文献   

6.
望贤成  靳常青 《物理学报》2018,67(20):207414-207414
“111”型铁基超导体系包含LiFeAs,NaFeAs和LiFeP三个组员.这三个组员的晶体结构简单,具有非极性解离面等特点,在铁基超导物理机理研究中发挥着独特的作用.本文简要介绍“111”型铁基超导体的研究进展.  相似文献   

7.
We present results of ab initio LDA calculations of electronic structure of “next generation” layered iron-pnictide high-T c superconductor LiFeAs (T c = 18 K). Obtained electronic structure of LiFeAs very similar to recently studied ReOFeAs (Re = La, Ce, Pr, Nd, Sm) and AFe2As2 (A = Ba, Sr) compounds. Namely close to the Fermi level its electronic properties are also determined mainly by Fe 3d-orbilats of FeAs4 two-dimensional layers. Band dispersions of LiFeAs are very similar to the LaOFeAs and BaFe2As2 systems as well as the shape of the Fe-3d density of states and Fermi surface. The article is published in the original.  相似文献   

8.
We have systematically investigated the global phase diagram for Li{x}M{y}HfNCl (M: molecule), demonstrating the independent controllability of carrier density x and interlayer spacing d. In LixHfNCl, the superconducting phase with almost constant T{c} of 20 K prevails for 0.15相似文献   

9.
王鑫  李桦  董正超  仲崇贵 《物理学报》2019,68(2):27401-027401
基于密度泛函理论的第一性原理计算,研究了二维应变作用下LiFeAs超导薄膜的磁性结构、电子能带和态密度变化,分析了应变对其超导电性的作用.结果显示,对体系施加1%—6%的二维平面张、压应变均不改变其基态条形反铁磁性结构,费米面附近的电子态密度主要来自于Fe-3d轨道电子以及少量的As-4p电子.研究发现,与无应变情形相比,当施加压应变时,体系中Fe离子的反平行的电子自旋局域磁矩减小,薄膜反铁磁性受到抑制,费米面上电子态密度增加,超导电性来自于以反铁磁超交换耦合作用为媒介的空穴型费米面和电子型费米面间嵌套的Cooper电子对.而在张应变作用时,局域反铁磁性增强,费米面上电子态密度减小,金属性减弱,特别是张应变时费米面上空穴型能带消失, Cooper电子对出现概率显著降低,将抑制超导相变.  相似文献   

10.
Low energy polarized electronic Raman scattering of the electron-doped superconductor Nd2-x Ce x CuO4 ( x = 0.15, T(c) = 22 K) has revealed a nonmonotonic d(x(2)-y(2)) superconducting order parameter. It has a maximum gap of 4.4k(B)T(c) at Fermi surface intersections with an antiferromagnetic Brillouin zone (the "hot spots") and a smaller gap of 3.3k(B)T(c) at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the hot spots emphasizes the role of antiferromagnetic fluctuations and the similarity in the origin of superconductivity for electron- and hole-doped cuprates.  相似文献   

11.
We study the normal state and pairing instability in electron-doped cuprates in a model with long-ranged antiferromagnetic spin fluctuations close to an antiferromagnetic quantum-critical point. We show that the fermionic self-energy has a non-Fermi-liquid form leading to peculiar frequency dependencies of the conductivity and the Raman response. We solve the pairing problem and demonstrate that T(c) is determined by the curvature of the Fermi surface, and the pairing gap delta (kappa, omega) is strongly nonmonotonic along the Fermi surface. The normal state frequency dependencies, the value of T(c) is approximately 10 K, and the kappa dependence of the gap agree with the experiment.  相似文献   

12.
The susceptibility and specific heat--and hence the effective mass--of the intermediate valence compound YbAl3 show anomalous enhancement below the Fermi liquid temperature T(coh) approximately 40 K. We show that these anomalies are suppressed by alloying in Yb1-xLuxAl3 indicating high sensitivity to lattice coherence. The de Haas-van Alphen effective masses for key branches of the Fermi surface are reduced by magnetic fields B>40 T. We argue that this reduction does not arise from 4f polarization but reflects renormalization of the quasiparticle states by the field.  相似文献   

13.
The high-T(c) superconductor Tl(2)Ba(2)CuO(6 + delta) is studied by angle-resolved photoemission spectroscopy. For a very overdoped T(c) = 30 K sample, the Fermi surface consists of a single large hole pocket centered at (pi, pi) and is approaching a topological transition. Although a superconducting gap with d(x(2)-y(2)) symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.  相似文献   

14.
We clarify effects of zeros of the Green function on a Fermi arc and on a non-Fermi liquid behavior in the two-dimensional Hubbard model by means of the cellular dynamical mean-field theory (CDMFT). We study in detail the state with a hole-pocket Fermi surface and zeros of the Green function, which was found for a slightly doped Mott insulator in an earlier CDMFT calculation [T.D. Stanescu, G. Kotliar, Phys. Rev. B 74 (2006) 125110; T.D. Stanescu, M. Civelli, K. Haule, G. Kotliar, Ann. Phys. (N.Y.) 321 (2006) 1682]. As thermal or other extrinsic scatterings of electrons broaden the zeros, regions around the zero surface gain an imaginary part of the self-energy, which strongly suppresses the spectral intensity, especially on the closer side of the hole pocket to the zero surface. Then the rest emerges as a Fermi arc. Quasiparticle weight becomes ill defined on the closer side of the Fermi pocket while it is well defined on the opposite side, which means that a differentiation of electrons occurs in the momentum space, indicating an emergence of a non-Fermi liquid phase.  相似文献   

15.
A crucial step in revealing the nature of unconventional superconductivity is to investigate the symmetry of the superconducting order parameter. Scanning tunneling spectroscopy has proven a powerful technique to probe this symmetry by measuring the quasiparticle interference (QPI) which sensitively depends on the superconducting pairing mechanism. A particularly well-suited material to apply this technique is the stoichiometric superconductor LiFeAs as it features clean, charge neutral cleaved surfaces without surface states and a relatively high T(c)~18 K. Our data reveal that in LiFeAs the quasiparticle scattering is governed by a van Hove singularity at the center of the Brillouin zone which is in stark contrast to other pnictide superconductors where nesting is crucial for both scattering and s(±) superconductivity. Indeed, within a minimal model and using the most elementary order parameters, calculations of the QPI suggest a dominating role of the holelike bands for the quasiparticle scattering. Our theoretical findings do not support the elementary singlet pairing symmetries s(++), s(±), and d wave. This brings to mind that the superconducting pairing mechanism in LiFeAs is based on an unusual pairing symmetry such as an elementary p wave (which provides optimal agreement between the experimental data and QPI simulations) or a more complex order parameter (e.g., s+id wave symmetry).  相似文献   

16.
We report measurements of the magnetic penetration depth lambda in single crystals of PrOs4Sb12 down to 0.1 K, with the ac field applied along the a, b, and c directions. In all three field orientations, lambda approximately T2 and superfluid density rho(s) approximately T2 for T<0.3T(c). Data are best fit by the 3He A-phase-like gap with multidomains, each having two point nodes along a cube axis, and parameter Delta(0)(0)/k(B)T(c)=2.6, suggesting that PrOs4Sb12 is a strong-coupling superconductor with two point nodes on the Fermi surface. We also confirm the double transitions at 1.75 and 1.85 K seen in other measurements.  相似文献   

17.
We apply strong magnetic fields of H=28.5 to 43 T to suppress superconductivity (SC) in the cuprates Bi2Sr2-xLaxCuO6+delta (x=0.65, 0.40, 0.25, 0.15, and 0), and investigate the low temperature (T) normal state by 63Cu nuclear spin-lattice relaxation rate (1/T1) measurements. We find that the pseudogap (PG) phase persists deep inside the overdoped region but terminates at x approximately 0.05, which corresponds to the hole doping concentration of approximately 0.21. Beyond this critical point, the normal state is a Fermi liquid that persists as the ground state when superconductivity is removed by the magnetic field. A comparison of the superconducting state with the H-induced normal state in the x=0.40 (Tc=32 K) sample indicates that there remains substantial part of the Fermi surface even in the fully developed PG state, which suggests that the PG and SC are coexisting matters.  相似文献   

18.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.  相似文献   

19.
The layered lithium borocarbide LiBC, isovalent with and structurally similar to the superconductor MgB2, is an insulator due to the modulation within the hexagonal layers (BC vs B2). We show that hole doping of LiBC results in Fermi surfaces of B-C p sigma character that couple very strongly to B-C bond stretching modes, precisely the features that lead to superconductivity at T(c) approximately equal to 40 K in MgB2. Comparison of Li(0.5)BC with MgB2 indicates the former to be a prime candidate for electron-phonon coupled superconductivity at substantially higher temperature than in MgB2.  相似文献   

20.
The evidence for the key role of the sigma bands in the electronic properties of MgB2 points to the possibility of nonadiabatic effects in the superconductivity of these materials. These are governed by the small value of the Fermi energy due to the vicinity of the hole doping level to the top of the sigma bands. We show that the nonadiabatic theory leads to a coherent interpretation of T(c) = 39 K and the boron isotope coefficient alphaB = 0.30 without invoking very large couplings and it naturally explains the role of the disorder on T(c). It also leads to various specific predictions for the properties of MgB2 and for the material optimization of these types of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号