首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Based on X-ray photoelectron spectroscopy (XPS), influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper. The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing, whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV. The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after annealing process, which plays a key role in generating the internal electric field formed by the dipoles. The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2O-based and O3-based HfO2 to vary in different ways, which is in agreement with the varition of flat band (VFB) voltage.  相似文献   

2.
Photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) measurements have been performed on HfSixOy and HfSixOyNz dielectric layers, which are potential candidates as high-k transistor gate dielectrics. The hafnium silicate layers, 3-4 nm thick, were formed by codepositing HfO2 and SiO2 (50%:50%) by MOCVD at 485 °C on a silicon substrate following an IMEC clean. Annealing the HfSixOy layer in a nitrogen atmosphere at 1000 °C resulted in an increase in the Si4+ chemical shift from 3.5 to 3.9 eV with respect to the Si0 peak. Annealing the hafnium silicate layer in a NH3 atmosphere at 800 °C resulted in the incorporation of 10% nitrogen and the decrease in the chemical shift between the Si4+ and the Si0 to 3.3 eV. The results suggest that the inclusion of nitrogen in the silicate layer restricts the tendency of the HfO2 and the SiO2 to segregate into separate phases during the annealing step. Synchrotron radiation valence band photoemission studies determined that the valence band offsets were of the order of 3 eV. X-ray absorption measurements show that the band gap of these layers is 4.6 eV and that the magnitude of the conduction band offset is as little as 0.5 eV.  相似文献   

3.
A high-quality Ga2O3 thin film is deposited on an SiC substrate to form a heterojunction structure. The band alignment of the Ga2O3/6H-SiC heterojunction is studied by using synchrotron radiation photoelectron spectroscopy. The energy band diagram of the Ga2O3/6H-SiC heterojunction is obtained by analysing the binding energies of Ga 3d and Si 2p at the surface and the interface of the heterojunction. The valence band offset is experimentally determined to be 2.8 eV and the conduction band offset is calculated to be 0.89 eV, which indicate a type-II band alignment. This provides useful guidance for the application of Ga2O3/6H-SiC electronic devices.  相似文献   

4.
Band bending and band alignment at HfO2/SiO2/Si and HfO2/Hf/SiO2/Si interfaces were investigated using X-ray photoelectron spectroscopy. After Hf-metal pre-deposition, a 0.55 eV band bending in Si and a 1.80 eV binding energy decrease for Hf 4f and O 1s of HfO2 were observed. This was attributed to the introduction of negative space charges at interface by Hf pre-deposition. Band bending decrease and synchronous binding energy increases of O 1s and Hf 4f for HfO2 were observed during initial Ar+ sputtering of the Hf pre-deposited sample. This was interpreted through the neutralization of negative space charges by sputtering-induced oxygen vacancies.  相似文献   

5.
AlGaN layers with Al content varying over the whole range of compositions were grown by molecular beam epitaxy (MBE) on n-6H-SiC substrates. The band gap energy is obtained from the vanishing of Fabry–Pérot oscillations in a fit to optical reflection spectra near the band gap absorption edge. The surface potential was determined by in-situ X-ray photoemission spectroscopy (XPS) and is found to increase as a function of the Al content from (0.5±0.1) eV to (1.3±0.1) eV, from GaN to AlN. A Si3N4 thin passivation layer was formed in-situ onto a 2DEG AlGaN/GaN structure. The mechanism underlying the passivation of high electron mobility transistor (HEMT) structures is suggested to be based on the formation of interface states, which keep the Fermi level fixed at a position close to that of the free AlGaN surface. PACS 73.20.-r; 73.40.-c; 73.40.Kp  相似文献   

6.
The most important interband transitions and the local charge neutrality level (CNL) in silicon carbide polytypes 3C-SiC and nH-SiC (n = 2?C8) are calculated using the GW approximation for the self energy of quasiparticles. The calculated values of band gap E g for various polytypes fall in the range 2.38 eV (3C-SiC)-3.33 eV (2H-SiC) and are very close to the experimental data (2.42?C3.33 eV). The quasiparticle corrections to E g determined by DFT-LDA calculations (about 1.1 eV) are almost independent of the crystal structure of a polytype. The positions of CNL in various polytypes are found to be almost the same, and the change in CNL correlates weakly with the change in E g, which increases with the hexagonality of SiC. The calculated value of CNL varies from 1.74 eV in polytype 3C-SiC to 1.81 eV in 4H-SiC.  相似文献   

7.
Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface properties, gate-oxide leakage and device reliability is investigated. Among the surface pretreatments in NH3, NO, N2O and TCE ambients, the TCE pretreatment gives the least interlayer growths the lowest interface-state density, the smallest gate leakage and the highest reliability. All these improvements should be ascribed to the passivation effects of Cl2 and HC1 on the structural defects in the interlayer and at the interface, and also their gettering effects on the ion contamination in the gate dielectric.  相似文献   

8.
Synchrotron radiation photoemission spectroscopy and optical transmission spectrum measurements have been performed on an HfO2 thin film grown on a Si(100) substrate to determine the band structure of the HfO2/Si stack. The result shows a valence-band offset of 2.5 eV and a conduction-band offset of 2.2 eV for the HfO2/Si interface. The Schottky barrier height between Au and HfO2 is obtained from current density–voltage measurement. The characterization reveals that the dominant conduction mechanism in the region of low field under gate injection is Schottky emission. The energy-band diagram of an Au–HfO2–Si MOS stack was obtained from these results.  相似文献   

9.
The interfacial properties of MoS2/4H-SiC heterostructures were studied by combining first-principles calculations and X-ray photoelectron spectroscopy. Experimental (theoretical) valence band offsets (VBOs) increase from 1.49 (1.46) to 2.19 (2.36) eV with increasing MoS2 monolayer (1L) up to 4 layers (4L). A strong interlayer interaction was revealed at 1L MoS2/SiC interface. Fermi level pinning and totally surface passivation were realized for 4H-SiC (0001) surface. About 0.96e per unit cell transferring forms an electric field from SiC to MoS2. Then, 1L MoS2/SiC interface exhibits type I band alignment with the asymmetric conduction band offset (CBO) and VBO. For 2L and 4L MoS2/SiC, Fermi level was just pinning at the lower MoS2 1L. The interaction keeps weak vdW interaction between upper and lower MoS2 layers. They exhibit the type II band alignments and the enlarged CBOs and VBOs, which is attributed to weak vdW interaction and strong interlayer orbital coupling in the multilayer MoS2. High efficiency of charge separation will emerge due to the asymmetric band alignment and built-in electric field for all the MoS2/SiC interfaces. The multiple interfacial interactions provide a new modulated perspective for the next-generation electronics and optoelectronics based on the 2D/3D semiconductors heterojunctions.  相似文献   

10.
The integration of higher carrier mobility materials to increase drive current capability in the next CMOS generations is required for device scaling. But a fundamental issue regarding the introduction of high-mobility III–V in CMOS is the electrical passivation of the interface with the high-κ gate dielectric. In this work, we show that in situ H2S surface treatment on GaAs(001) leads to a stable and reorganized oxide/III–V interface. The exposition of the GaAs surface is monitored in situ by RHEED and the interface is characterized by XPS analyses. Finally, MOS capacitors are fabricated to extract interface state density over the band gap. These results highlight a promising re-interest in chalcogenide passivation of III–V surfaces for CMOS applications.  相似文献   

11.
High-κ dielectrics SrZrO3 were prepared on Ge(0 0 1) substrate using pulse laser deposition, and band alignments and thermal annealing effects were studied with high resolution X-ray photoemission spectroscopy. Valence and conduction band offsets at this interface were measured to be 3.26 eV and 1.77 eV, respectively. Interfacial Ge oxide layers were found at the interface. After annealing at 600 °C, the interfacial Ge oxide layers were eliminated, and the valence band offset increased to 3.50 eV, but the amorphous SrZrO3 became polycrystalline in the meantime.  相似文献   

12.
An increase in the density of states between the oxygen 2p bands and the Fermi level is seen with increasing Gd concentrations. In addition, for the Gd-doped HfO2 films, the Gd 4f photoexcitation peak at 5.5 eV below the valence band maximum was identified using resonant photoemission. Electrical measurements show pronounced rectification properties for lightly-doped Gd:HfO2 films on p-Si and for heavily-doped Gd:HfO2 films on n-Si, suggesting a crossover from n-type to p-type behavior with increasing doping level. In addition, there is an increase in the reverse bias current with neutron irradiation.  相似文献   

13.
First principles calculations of HfO2/GaAs interfaces indicate that the interface states originate from the charge mismatch between HfO2 and GaAs surfaces. We find that a model neutral interface (HfO2 and GaAs surfaces terminated with two O and one Ga atoms per surface unit cell) removes gap states due to the balance of the interface charge. F and H can neutralize the HfO2/GaAs interface resulting in useful band offsets, thus becoming possible candidates to passivate the interface states.  相似文献   

14.
Sulfur was embedded in atomic‐layer‐deposited (ALD) HfO2 films grown on Ge substrate by annealing under H2S gas before and after HfO2 ALD. The chemical states of sulfur in the film were examined by S K‐edge X‐ray absorption spectroscopy. It was revealed that the valences of S‐ions were mostly –2 at Ge/HfO2 interface (GeSx or HfO2–ySy to passivate the interface), while they were mostly +6 in HfO2 layers (sulfates; HfO2–z(SO4)z). The leakage current density in post‐deposi‐tion‐treated film was lower than that in pre‐deposition‐treated one. This suggests that the passivation of defects in oxide layer by sulfate ions is more effective to lower the leakage current rather than the interface defect passivation by S2– ions. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
Ir/4H-SiC and IrO2/4H-SiC Schottky diodes are reported in terms of different methods of surface pretreatment before contact deposition. In order to find the effect of surface preparation processes on Schottky characteristics the SiC wafers were respectively cleaned using the following processes: (1) RCA method followed by buffered HF dip. Next, the surface was oxidized (5.5 nm oxide) using a rapid thermal processing reactor chamber and circular geometry windows were opened in the oxide layer before metallization deposition; (2) the same as sequence (1) but with an additional in situ sputter etching step before metallization deposition; (3) cleaning in organic solvents followed by buffered HF dip. The I-V characteristics of Schottky diodes were analyzed to find a correlation between extracted parameters and surface treatment. The best results were obtained for the sequence (1) taking into account theoretical value of Schottky barrier height. The contacts showed excellent Schottky behavior with ideality factors below 1.08 and barrier heights of 1.46 eV and 1.64 eV for Ir and IrO2, respectively. Very promising results were obtained for samples prepared using the sequence (2) taking into account the total static power losses because the modified surface preparation results in a decrease in the forward voltage drop and reverse leakage current simultaneously. The contacts with ideality factor below 1.09 and barrier height of 1.02 eV were fabricated for Ir/4H-SiC diodes in sequence (2).  相似文献   

16.
Interface models and processing technologies are reviewed for successful establishment of surface passivation, interface control and MIS gate stack formation in III-V nanoelectronics. First, basic considerations on successful surface passivation and interface control are given, including review of interface models for the band alignment at interfaces, and effects of interface states in nanoscale devices. Then, a brief review is given on currently available surface passivation technologies for III-V materials, including the Si interface control layer (ICL)-based passivation scheme by the authors’ group. The Si-ICL technique has been successfully applied to surface passivation of nanowires and to formation of a HfO2 high-k dielectric/GaAs interfaces with low values of the interface state density.  相似文献   

17.
The effect of bromine methanol (BM) etching and NH4F/H2O2 passivation on the Schottky barrier height between Au contact and semi-insulated (SI) p-Cd1−xZnxTe (x ≈ 0.09-0.18) was studied through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Near-infrared (NIR) spectroscopy technique was utilized to determine the Zn concentration. X-ray photoelectron spectroscopy (XPS) for surface composition analysis showed that BM etched sample surface left a Te0-rich layer, however, which was oxidized to TeO2 and the surface [Te]/([Cd] + [Zn]) ratio restored near-stoichiometry after NH4F/H2O2 passivation. According to I-V measurement, barrier height was 0.80 ± 0.02-0.85 ± 0.02 eV for Au/p-Cd1−xZnxTe with BM etching, however, it increased to 0.89 ± 0.02-0.93 ± 0.02 eV with NH4F/H2O2 passivation. Correspondingly, it was about 1.34 ± 0.02-1.43 ± 0.02 eV and 1.41 ± 0.02-1.51 ± 0.02 eV by C-V method.  相似文献   

18.
The remote plasma nitridation (RPN) of an HfO2 film using N2 and NH3 has been investigated comparatively. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses after post-deposition annealing (PDA) at 700 °C show that a large amount of nitrogen is present in the bulk film as well as in the interfacial layer for the HfO2 film nitrided with NH3-RPN. It is also shown that the interfacial layer formed during RPN and PDA is a nitrogen-rich Hf-silicate. The C-V characteristics of an HfOxNy gate dielectric nitrided with NH3-RPN have a smaller equivalent oxide thickness than that nitrided with N2-RPN in spite of its thicker interfacial layer.  相似文献   

19.
The properties of silver-silicon interfaces formed by cleaving n-type silicon in ultra high vacuum (UHV) in a stream of evaporating silver atoms were studied. The barrier heights of these contacts were measured at different temperatures by using C-V techniques. All measurements were performed in UHV. The dependence of the barrier height upon temperature did not follow the temperature dependence of the Si band gap as it is usually found. The measured temperature behavior depended on the roughness of the Si surface. The temperature behavior can be explained by assuming a specific band structure of the interface states. For Ag contacts on atomically smooth n-type Si, the interface states were found to be arranged in two bands, one band 4 × 10?3 eV wide with acceptor type states 0.18 eV below the intrinsic level Ei and a density of 1017 states/cm2 eV, and the other 1 eV wide with donor type states with its upper edge 0.28 eV below Ei, and a density of 4 × 1014 states/cm2eV.  相似文献   

20.
The flat band voltage shifts of HfO2/SiO2/nSi capacitors with ultra-thin La2O3 insertion at HfO2/SiO2 interface have been confirmed using hard X-ray photoelectron spectroscopy (HX-PES). By increasing the amount of La2O3 insertion, the binding energy of Si 1s core spectra increases, which means that the surface potential of Si substrate also increases. A voltage drop difference of HfO2 and La2O3 at SiO2 interface can be estimated to be 0.40 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号