首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
By means of the Keldysh Green's function method, we investigate the spin-polarized electron transport in a three-terminal device, which is composed of three normal metal leads and two serially-coupled quantum dots (QDs). The Rashba spin-orbit interaction (RSOI) is also considered in one of the QDs. We show that the spin-polarized charge current with arbitrary spin polarization can be obtained because of the quantum spin interference effect arising from the Rashba spin precession phase, and it can be modulated by the system parameters such as the applied external voltages, the RSOI strength, the QD levels, as well as the dot-lead coupling strengths. Moreover, a fully spin-polarized current or a pure spin current without any accompanying charge current can also be controlled to flow in the system. Our findings indicate that the proposed model can serve as an all-electrical spin device in spintronics field.  相似文献   

2.
We propose an electrical scheme for the generation of a pure spin current without a charge current in a two-terminal device, which consists of a scattering region of a two-dimensional electron gas (2DEG) with Rashba (R) and/or Dresselhaus (S) spin-orbit interaction (SOI) and two normal leads. The SOI is modulated by a time-dependent gate voltage to pump a spin current. Based on a tight-binding model and the Keldysh Green’s function technique, we obtain the analytical expression of the spin current. It is shown that a pure spin current can be pumped out, and its magnitude could be modulated by device parameters such as the oscillating frequency of the SOI, as well as the SOI strength. Moreover, the spin polarisation direction of the spin current could also be tuned by the strength ratio between RSOI and DSOI. Our proposal provides not only a fully electrical means to generate a pure spin current but also a way to control the spin polarisation direction of the generated spin current.  相似文献   

3.
We show that electron-nuclear spin coupling in semiconductor heterostructures is strongly modified by their potential inversion asymmetry. This is demonstrated in a GaAs quantum well, where we observe that the current-induced nuclear spin polarization at Landau-level filling factor nu=2/3 is completely suppressed when the quantum well is made largely asymmetric with gate voltages. Furthermore, we find that the nuclear spin relaxation rate is also modified by the potential asymmetry. These findings strongly suggest that even a very weak Rashba spin-orbit interaction can play a dominant role in determining the electron-nuclear spin coupling.  相似文献   

4.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

5.
We study the spin-resolved transport in a two-terminal graphene nanoflake device with a Rashba spinorbit coupling region in the center of the device. The Green's function method is applied to the system and the spin transmission probability and the spin polarization in x, y, and z directions are calculated. It is found that the components of the spin polarization are antisymmetric functions of Fermi energy, which oscillate and decay to the zero with increasing the energy for all values of the Rashba strength. It is shown that by tuning the Rashba strength via a gate voltage and/or changing the size of the system, it is possible to control the sign and magnitude of the spin polarization. The system represented here is a typical candidate for full electrical spintronic devices based on the carbon materials that are used for spin filtration.  相似文献   

6.
Using the Keldysh Green’s function method, we study theoretically the electron accumulation induced by the inverse spin Hall effect in a spin valve structure in which a clean quantum wire formed from a 2D electron gas (2DEG) with Rashba/Dresselahaus spin orbit interaction (SOI) is connected to two ferromagnet electrodes. In a nonequilibrium situation when a spin current with an out-of plane (the 2DEG plane) spin polarization is driven through the SOI region by an external voltage, non-equilibrium electron accumulation or a Hall voltage forms at the two lateral sides of the quantum wire and exhibits an oscillation along the wire like the Rashba spin precession; the magnetization directions of FMs affect the Hall voltage and their parallel or antiparallel alignment along the normal direction of the 2DEG plane is most favorable to the Hall voltage. In an equilibrium situation, two planar magnetizations which are not collinear can generate an electron accumulation/a Hall voltage too. When one of the FM electrodes is replaced by a normal metal (NM), the electron accumulation is still present along the wire and its magnitude remains nearly unchanged in the biased case, whereas in the unbiased case it is reduced significantly and even vanishes.  相似文献   

7.
The spin Hall current in a two-dimensional electron system with nonuniform Rashba spin–orbit interaction (SOI) is investigated by means of the lattice Green's function method. Large electric and spin Hall currents are produced by this nonuniform Rashba SOI, while the electric Hall current vanishes in the uniform Rashba SOI system. A nondissipative spin Hall current is also produced, without any longitudinal voltage bias, any external magnetic field and any special class of band insulators.  相似文献   

8.
We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic four-terminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Büttiker formalism, we found that when alongitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.  相似文献   

9.
Spin-dependent electron transport in a periodically stubbed quantum wire in the presence of Rashba spin-orbit interaction (SOI) is studied via the nonequilibrium Green’s function (GF) method combined with the Landauer-Büttiker formalism. By comparing with a straight Rashba quantum wire, the magnitude of spin conductance can be enhanced obviously. In addition, the charge and spin switching can also be found in the considered system. The mechanism of these transport properties is revealed by analyzing the total charge density and spin-polarized density distributions in the stubbed quantum wire. Furthermore, periodic spin-density islands with high polarization are also found inside the stubs, owing to the interaction between the charge density islands and the Rashba SOI-induced effective magnetic field. These interesting findings may be useful in further understanding of the transport properties of low-dimensional systems and in devising an all-electrical multifunctional spintronic device based on the proposed structure.  相似文献   

10.
We investigate theoretically the spin Hall current in an inhomogeneous Rashba mesoscopic ring attached to four terminals. It is shown that a voltage drop can be tuned by adjusting the gate voltage due to the inhomogeneous Rashba effect, and provides us a tool to measure spin Hall current electrically. The spin Hall current and the ratio of the probe voltages can survive and keep their obvious relationship even in the presence of disorder. The regular relationship between the spin Hall conductance and the ratio of the probe voltages will be destroyed by the interference between different channels in multi-channel ring.  相似文献   

11.
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.  相似文献   

12.
We study the spin Nernst effect of a mesoscopic four-terminal cross-bar device with the Rashba spin–orbit interaction (SOI) in the absence of a magnetic field. The interplay between the spin Nernst effect and the seebeck coefficient is investigated for a wide range of the Rashba SOI. When no peaks appeared in the seebeck coefficient, an oscillatory spin Nernst effect still occurs. In addition, the disorder effect on the spin Nernst effect is also studied. We find that the spin Nernst effect can be enhanced up to threefold by disorder. Besides, due to the interface effect, the counter propagating of the charge current to the direction of the temperature gradient is possible for a nonuniform system.  相似文献   

13.
叶成芝  聂一行  梁九卿 《中国物理 B》2011,20(12):127202-127202
We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.  相似文献   

14.
肖贤波  李小毛  周光辉 《物理学报》2007,56(3):1649-1654
理论上研究Rashba自旋-轨道相互作(SOI)量子线在外电磁波辐照下的电子自旋极化输运性质.在自由电子模型下利用散射矩阵方法,发现当Rashba SOI较弱时,自旋极化率与外电磁场频率和电子入射能量无关,而当Rashba SOI较强时,自旋极化率则强烈依赖于外场频率和电子入射能量,其物理根源是Rashba SOI使子带混合引起的.此外,当电子的入射能量增加到打开另一通道阈值时,电子的透射率出现一个反常的台阶结构,这来源于电子与光子的非弹性散射而使电子在子带间的跃迁. 关键词: 量子线 电磁波 自旋极化输运 散射矩阵  相似文献   

15.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

16.
We establish a general formalism of the bulk spin polarization (BSP) and the current-based spin polarization (CSP) for mesoscopic ferromagnetic and spin–orbit interaction (SOI) semiconducting systems. Based on this formalism, we reveal the basic properties of BSP and CSP and their relationships. The BSP describes the intrinsic spin polarized properties of devices. The CSP depends on both intrinsic parameters of device and the incident current. For the non-spin-polarized incident current with the in-phase spin-phase coherence, CSP equals to BSP. We give analytically the BSP and CSP of several typical nanodevice models, ferromagnetic nanowire, Rashba nanowire and rings. These results provide basic physical behaviors of BSP and CSP and their relationships.  相似文献   

17.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

18.
Spin transport properties in a non-uniform quantum wire (QW) in the presence of both the Rashba and Dresselhaus spin–orbit couplings (SOCs) is investigated by using the non-equilibrium Green's function (NEGF) method combined with the Landauer Büttiker formalism. It is found that such a non-uniform quantum wire exhibits considerable spin polarization in its conductance in the influence of both the Rashba and Dresselhaus SOCs, and that the two SOCs' strengths strongly affect both the magnitude and sign of the electron spin polarization. Interestingly, the Rashba and Dresselhaus SOCs play the same modulating role in the electron spin polarization. The proposed nanostructure can potentially be utilized to devise an all-electrical spintronic device.  相似文献   

19.
刘平  熊诗杰 《中国物理 B》2009,18(12):5414-5419
The influence of electron--phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin--orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positions; unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.  相似文献   

20.
We report a theoretical study on generation of a spin polarized charge current with arbitrary spin polarization, including the fully-spin-polarized current. In a two-terminal mesoscopic ring device, the Rashba spin-orbit coupling (RSOC) is considered as well as a microwave field applied on one of arms of the ring. It is shown that at zero external bias a spin current can be produced in addition to the usual charge current pumped by the microwave field, which is attributed to the the quantum interference effect of the RSOC induced spin precession phase. By varying the system parameters such as the microwave frequency and the RSOC strength, not only the magnitude but also the direction of the spin current can be efficiently controlled, moreover, the spin-polarization degree of the charge current can readily be tuned by these system parameters in the range [-1,1]. Since all the parameters can be controlled electrically in our study, the proposed device may shed light on the possibility of an all-electrical generation and tuning of a spin-polarized current in the field of the spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号