首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
夏志林 《物理学报》2011,60(5):56804-056804
采用蒙特卡罗方法模拟了1064 nm,GW/cm2级脉冲激光辐照下,纳米尺度材料中电子迁移及加速过程.电子在激光场中迁移的过程涉及晶格散射、表面散射以及碰撞电离等作用.结果表明:材料的尺度小到一定程度后,表面散射作用主导电子散射过程,小尺寸限制效应表现明显,电子很难有效地吸收激光能量.研究结果对分析具有纳米尺度微结构材料的激光损伤行为提供了依据.同时,根据该小尺寸限制效应可以设计出具有新型纳米微结构的高激光损伤阈值薄膜. 关键词: 激光辐照 小尺度效应 电子加速 蒙特卡罗模拟  相似文献   

2.
Linear Thomson scattering by a relativistic electron of a short pulse laser has been investigated by computer simulation. Under a laser field with a pulse of 33.3-fs full-width at half-maximum, and the initial energy of an electron of γ0=10, the motion of the electron is relativistic and generates an ultrashort radiation of 76-as with a photon wave length of 2.5-nm in the backward scattering. The radiation under a high relativistic energy electron has better characteristic than under a low relativistic energy electron in terms of the pulse width and the angular distribution.  相似文献   

3.
The evolution of the electron energy distribution function in a plasma channel in a xenon plasma at atmospheric pressure created by radiation of a KrF femtosecond laser has been considered. It has been shown that, owing to the existence of the Ramsauer minimum in the transport scattering cross section, such a channel can be used to amplify electromagnetic waves up to the terahertz frequency range at relaxation times of the energy spectrum of ~10?7 s. The gain factor has been calculated as a function of the time and radiation frequency.  相似文献   

4.
The process of Thomson scattering of an ultra-intense laser pulse by a relativistic electron bunch has been proposed as a way to obtain a bright source of short, tunable and quasi-monochromatic X-ray pulses. The real applicability of such a method depends crucially on the electron-beam quality, the angular and energetic distributions playing a relevant role. In this paper we present the computation of the Thomson-scattered radiation generated by a plane-wave, linearly polarized and flat-top laser pulse, incident on a counterpropagating electron bunch having a sizable angular divergence and a generic energy distribution. Both linear and nonlinear Thomson-scattering regimes are considered and the impact of the rising front of the pulse on the scattered-radiation distribution has been taken into account. Simplified relations valid for long laser pulses and small values of both scattering angle and bunch divergence are also reported. Finally, we apply the results to the cases of backscattering with electron bunches typically produced with both standard radio-frequency-based accelerators and laser–plasma accelerators.  相似文献   

5.
Presently available laser sources can yield powers for which the ponderomotive energy of an electrons can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons . The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field [Phys. Rev. A 65, 022712 and 033408 (2002)].Received: 3 November 2002, Published online: 29 April 2003PACS: 34.50.Rk Laser-modified scattering and reactions - 34.80.Qb Laser-modified scattering - 32.80.Wr Other multiphoton processes  相似文献   

6.
Electron photorecombination in the presence of a strong low-frequency laser field has been analyzed using an exactly solvable quantum model. It has been shown that interference patterns in the electron photorecombination spectrum are more sensitive to the details of the atomic potential than those in the case of other non-linear processes. For electron photorecombination on Xe+ ions, the manifestation of the Ramsauer effect in the cross section for the elastic scattering of slow electrons on Xe+ ions has been predicted in the electron photorecombination spectrum modified by the laser field.  相似文献   

7.
Thomson scattering of high-power laser and electron beams is a good test of electrodynamics in the high-field region. We demonstrated production of high-intensity X-rays in the head-on collision of a CO2 laser and 60-MeV electron beams at Brookhaven National Laboratory, Accelerator Test Facility. The energy of an X-ray photon was limited at 6.5 keV in the linear (lowest order) Thomson scattering, but the nonlinear (higher order) process produces higher energy X-rays. We measured the angular distribution of the high-energy X-rays and confirmed that it agrees with theoretical predictions.  相似文献   

8.
In the present work, we present the spatial evolution of the copper plasma produced by the fundamental harmonic (1064 nm) and second harmonic (532 nm) of a Q-switched Nd:YAG laser. The experimentally observed line profiles of neutral copper have been used to extract the electron temperature using the Boltzmann plot method, whereas, the electron number density has been determined from the Stark broadening. Besides we have studied the variation of electron temperature and electron number density as a function of laser energy at atmospheric pressure. The Cu I lines at 333.78, 406.26, 465.11 and 515.32 nm are used for the determination of electron temperature. The relative uncertainty in the determination of electron temperature is ≈10%. The electron temperature calculated for the fundamental harmonic (1064 nm) of Nd:YAG laser is 10500–15600 K, and that for the second harmonic (532 nm) of Nd:YAG laser is 11500–14700 K at a Q Switch delay of 40 μs. The electron temperature has also been calculated as a function of laser energy from the target surface for both modes of the laser. We have also studied the spatial behavior of the electron number density in the plume. The electron number densities close to the target surface (0.05 mm), in the case of fundamental harmonic (1064 nm) of Nd:YAG laser having pulse energy 135 mJ and second harmonic (532 nm) of Nd:YAG laser with pulse energy 80 mJ are 2.50×1016 and 2.60×1016 cm−3, respectively.  相似文献   

9.
A theory of thermonuclear fusion caused by the irradiation of deuterium-iodide clusters with the field of a superatomic femtosecond laser pulse is developed. It is based on considering the process in which the sequential above-barrier multiple internal ionization of atomic ions within a cluster is accompanied by external field ionization. The theory is illustrated by taking the example of a cluster that is formed by 106 molecules of deuterium iodide and which is irradiated with a laser pulse of duration 50 fs and intensity 2×1018 W/cm2 at the peak. This case is dominated by I26+ atomic ions. The yield of neutrons from thermonuclear fusion in a deuteron-deuteron collision upon the passage of a laser pulse is calculated. The result is 105 neutrons per laser pulse. The mean kinetic energy of deuterons is estimated at 50 keV. Owing to induced inverse bremsstrahlung in scattering on multiply charged atomic ions, the electron temperature increases up to 28 keV. The role of the Mie resonance in the heating of the electron component is discussed.  相似文献   

10.
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8\tm106Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2×1016 W/cm2 laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.  相似文献   

11.
Thermonuclear fusion induced by the irradiation of solid deuterated cluster targets and foils with fields of strong femtosecond and picosecond laser pulses is discussed. The thermonuclear-fusion process D(d, n)3He in a collision of two deuterons at an energy of 50 to 100 keV in a deuterium cluster target irradiated with a strong laser pulse is discussed. A theory of thermonuclear fusion proceeding upon the irradiation of clusters formed by deuterium iodide (DI) molecules with the field of a superintense femtosecond laser pulse is developed. This theory is based on an above-barrier process in which the sequential multiple inner ionization of atomic ions within a cluster is accompanied by field-induced outer ionization. The yield of neutrons from thermonuclear fusion in a deuteron-deuteron collision after the completion of a laser pulse is calculated. The yield of neutrons is determined for the thermonuclear-fusion reaction proceeding in the interaction of an intense picosecond laser pulse with thin TiD2 foils. A multiple ionization of titanium atoms at the front edge of the laser pulse is considered. The heating of free electron occurs in induced inverse bremsstrahlung in the process of electron scattering on multiply charged titanium ions. The yield of alpha particles in the thermonuclear-fusion reaction involving protons and 11B nuclei that is induced in microdrops by a strong laser field is determined. Experimental data on laser-induced thermonuclear fusion are discussed.  相似文献   

12.
激光-电子康普顿散射物理特性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
葛愉成 《物理学报》2009,58(5):3094-3103
对激光-电子康普顿散射物理特性即能量特性和微分截面角分布进行了仔细的研究.计算结果显示出光子能量和微分截面角分布的简单结构.康普顿散射X射线光源具有散射光子的能量易调节、方向性好等特点.在入射电子束能量很高时,X射线近乎单向出射.光源色散度较大,但实验上可以获得色散(带宽)小的X射线.对于各种波长的激光,在很宽的电子束能量范围(1 MeV—10 GeV)内,散射X射线光子的总截面和前向发射圆锥内(半圆锥角1/γ,其中γ=E/m0 关键词: 康普顿散射 能量特性 微分截面 角分布  相似文献   

13.
The formation of SiC nanocrystals of the cubic modification in the process of high-temperature carbonization of porous silicon has been analyzed. A thermodynamic model has been proposed to describe the experimental data obtained by atomic-force microscopy, Raman scattering, spectral analysis, Auger spectroscopy, and X-ray diffraction spectroscopy. It has been shown that the surface energy of silicon nanoparticles and quantum filaments is released in the process of annealing and carbonization. The Monte Carlo simulation has shown that the released energy makes it possible to overcome the nucleation barrier and to form SiC nanocrystals. The processes of laser annealing and electron irradiation of carbonized porous silicon have been analyzed.  相似文献   

14.
First results are presented from an experiment scattering laser light from a relativistic electron beam. The 5 cm diameter continuous electron beam of 28 keV kinetic energy and 2.6 A current presents an electron gas of a density of 8×107 cm–3, from which 20 ns pulses of laser light (490 nm) were scattered at a repetition rate of 15 Hz and an average power of 20 mJ per pulse. The Doppler-shifted wavelength of photons backscattered under 180° was analysed with a Fabry-Perot interferometer. This technique provides, for the first time, a non-destructive measurement of the velocity distribution in an electron beam radially resolved in space. The results presented here comprise the direct measurement of the absolute electron energy and the degree of space-charge compensation in the electron beam. The determination of an upper bound of 10–2 for the ratio of longitudinal to transverse electron temperature implies the first direct measurement of a flattened velocity distribution.  相似文献   

15.
The optical limitation effect in three-component systems formed in colloidal solutions of semiconductor CdSe/ZnS quantum dots with participation of fullerene C60 and perylene, has been experimentally investigated. The first and second harmonics of a YAG:Nd3+ laser operating in the single-shot mode with a pulse duration of 7 ns and laser pulses subjected to stimulated Brillouin scattering (SBS)-stimulated Raman scattering (SRS) compression with a duration of about 20 ps near 560 nm have been used as radiation sources. It is shown that the optical limitation efficiency in the systems studied is determined by electron transfer. This is confirmed by the analysis of luminescence quenching.  相似文献   

16.
在量子散射框架下,对真实激光场引进多光子相互作用准静态过程模型,考虑束缚-自由跃迁中电磁场的规范一致性及电子与激光场长程相互作用的极限,研究激光场对量子散射过程中三重微分散射截面的影响。多数共面非对称情况下激光场对三重微分散射截面有提升作用,此外靶原子处于激发态时binary峰出现分裂,激光场对三重微分散射截面也有放大作用。  相似文献   

17.
在量子散射框架下,对真实激光场引进多光子相互作用准静态过程模型,考虑束缚-自由跃迁中电磁场的规范一致性及电子与激光场长程相互作用的极限,研究激光场对量子散射过程中三重微分散射截面的影响.多数共面非对称情况下激光场对三重微分散射截面有提升作用,此外靶原子处于激发态时binary峰出现分裂,激光场对三重微分散射截面也有放大作用.  相似文献   

18.
The effect of lattice heating by laser pulses on the dynamics of electron plasma generation in transparent solids has been theoretically studied. Several ways of taking into account the contribution of the phonon spectrum heating to the electron avalanche dynamics, depending on the type of the effective (with respect to the field energy transfer to electrons) phonons and laser pulse duration, have been proposed. A comparative analysis of the results of Monte Carlo computation of electron gas heating in the laser pulse field, which were obtained for cold and heated lattices, has been performed. It is shown that the consideration of the effect of lattice heating on the probabilities of electron-phonon and electron-phonon-photon scattering leads to an increase in the avalanche rate, which is more pronounced at longer wavelengths of the incident radiation and under longer laser pulses. Some qualitative features of the redistribution of the energy, absorbed during a pulse, between the electron plasma and lattice are revealed, which suggest initiation of irreversible microscopic changes in the insulator. In particular, the ratio R of the energy accumulated in the electron subsystem to the excess (with respect to the initial equilibrium state) energy in the phonon subsystem has been calculated for different initial lattice temperatures. It is shown that this ratio increases with a decrease in the laser wavelength in the computation scheme with lattice heating disregarded and decreases at all pulse durations when the lattice heating is taken into account.  相似文献   

19.
A quantum mechanica treatment of the free carrier absorption by electrons in polar semiconductors has been constructed in terms of the Kane model. It takes into account overlap wavefunction factors, intermediate states in other bands, the finite optical phonon energy, and the effects of arbitrary spin orbit splitting on the electron energy and wavefunction. The scattering mechanisms considered include polar optical mode scattering, ionic scattering, piezoelectric and deformation coupled acoustic mode scattering, and electron-electron scattering.The theory, in the appropriate limits, applies to a wide range of photon energies, electron concentrations, and lattice temperatures. It relates the dominant scattering mechanism involved in the various limits to the characteristic behavior of the absorption coefficient as a function of the photon energy. In particular, the dominant scattering mechanism for small carrier concentrations is found to be polar optical mode scattering, which exhibits a λ3 dependence of the absorption coefficient times the index of refraction, (except at the lowest frequencies, where the expected λ2 dependence is obtained).Ionic, or impurity, scattering becomes important as the carrier concentration is increased, and the characteristic wavelength dependence of the electron cross section times the index of refraction varies from λ4 to λ3, and the absorption coefficient times the index of refraction from λ4 to λ2, depending on the ratio of the photon energy to the initial electron energies.Comparisons are made with the available data over a wide range of photon energies, temperatures, and electron concentrations, for the III–V compounds InSb, InAs, InP, and GaAs.  相似文献   

20.
高能电子与超强激光束作用产生的阿秒脉冲列   总被引:2,自引:1,他引:1       下载免费PDF全文
郑君  盛政明  张杰 《物理学报》2005,54(6):2638-2644
利用非线性汤姆孙散射的理论,从理论和数值模拟上研究了单电子在横向穿越高斯激光束束 腰时所辐射的x射线阿秒脉冲列的性质. 主要分析了电子以初始能量γ0=1M eV—100M eV横向穿越激光振幅参数为a0=1—10的高斯光束束腰获得的阿秒辐射脉冲的 时间 和空间性质. 计算表明,辐射呈现脉冲列的形式. 脉冲列的包络宽度取决于激光强度、束腰 的宽度以及入射电子能量. 电子的初始能量比激光强度对电子辐射脉冲的影响更大. 辐射脉 宽、脉冲间隔和脉冲包络宽度都正比于1/γ20,辐射功率正比于 γ60,辐射能 量正比于γ40. 当改变激光振幅a0时,辐射功率正比 于a20、辐射包络中单 个脉冲脉宽正比于1/a0、脉冲之间的间隔正比于a0. 当保持激光强 度不变,而改变光束 束腰半径w0时,辐射的脉冲数量、包络和辐射能量正比于w0. 当 激光功率保 持不变时而改变激光强度和束腰半径时,脉冲包络宽度和最大辐射能量都基本不变. 当激光 振幅参数a0=1,电子初始能量为10MeV时,激光束腰为两个激光波长时,电子 辐 射脉冲包络宽度只有14×10-3τ0(τ0为入 射激光周期),达到几个阿秒的量级. 关键词: 阿秒脉冲 非线性汤姆孙散射 高斯激光光束  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号