首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Respiratory noise is a confounding factor in functional magnetic resonance imaging (MRI) data analysis. A novel method called Respiratory noise Correction using Phase information is proposed to retrospectively correct for the respiratory noise in functional MRI (fMRI) time series. It is demonstrated that the respiratory movement and the phase of functional MRI images are highly correlated in time. The signal fluctuation due to respiratory movements can be effectively estimated from the phase variation and removed from the functional MRI time series using a Wiener filtering technique. In our experiments, this new method is compared with RETROICOR, which requires recording respiration signal simultaneously in an fMRI experiment. The two techniques show comparable performance with respect to the respiratory noise correction for fMRI time series. However, this technique is more advantageous because there is no need for monitoring the subjects’ respiration or changing functional MRI protocols. This technique is also potentially useful for correcting respiratory noise from abnormal breathing or when the respiration is not periodic.  相似文献   

2.
Wavelet methods for image regularization offer a data-driven alternative to Gaussian smoothing in functional magnetic resonance (fMRI) analysis. Their impact has been limited by the difficulties in integrating regularization in the wavelet domain and inference in the image domain, precluding the probabilistic decision on which areas are activated by a task. Here we present an integrated framework for Bayesian estimation and regularization in wavelet space that allows the usual voxelwise hypothesis testing. This framework is flexible, being an adaptation to fMRI time series of a more general wavelet-based functional mixed-effect model. Through testing on a combination of simulated and real fMRI data, we show evidence of improved signal recovery, without compromising test accuracy in image space.  相似文献   

3.
The autoregressive (AR) estimator, a non-parametric method, is used to analyze functional magnetic resonance imaging (fMRI) data. The same method has been used, with success, in several other time series data analysis. It uses exclusively the available experimental data points to estimate the most plausible power spectra compatible with the experimental data and there is no need to make any assumption about non-measured points. The time series, obtained from fMRI block paradigm data, is analyzed by the AR method to determine the brain active regions involved in the processing of a given stimulus. This method is considerably more reliable than the fast Fourier transform or the parametric methods. The time series corresponding to each image pixel is analyzed using the AR estimator and the corresponding poles are obtained. The pole distribution gives the shape of power spectra, and the pixels with poles at the stimulation frequency are considered as the active regions. The method was applied in simulated and real data, its superiority is shown by the receiver operating characteristic curves which were obtained using the simulated data.  相似文献   

4.
5.
Functional magnetic resonance imaging (fMRI) technique with blood oxygenation level dependent (BOLD) contrast is a powerful tool for noninvasive mapping of brain function under task and resting states. The removal of cardiac- and respiration-induced physiological noise in fMRI data has been a significant challenge as fMRI studies seek to achieve higher spatial resolutions and characterize more subtle neuronal changes. The low temporal sampling rate of most multi-slice fMRI experiments often causes aliasing of physiological noise into the frequency range of BOLD activation signal. In addition, changes of heartbeat and respiration patterns also generate physiological fluctuations that have similar frequencies with BOLD activation. Most existing physiological noise-removal methods either place restrictive limitations on image acquisition or utilize filtering or regression based post-processing algorithms, which cannot distinguish the frequency-overlapping BOLD activation and the physiological noise. In this work, we address the challenge of physiological noise removal via the kernel machine technique, where a nonlinear kernel machine technique, kernel principal component analysis, is used with a specifically identified kernel function to differentiate BOLD signal from the physiological noise of the frequency. The proposed method was evaluated in human fMRI data acquired from multiple task-related and resting state fMRI experiments. A comparison study was also performed with an existing adaptive filtering method. The results indicate that the proposed method can effectively identify and reduce the physiological noise in fMRI data. The comparison study shows that the proposed method can provide comparable or better noise removal performance than the adaptive filtering approach.  相似文献   

6.
Two statistical tests for detecting activated pixels in functional MRI (fMRI) data are presented. The first test (t-test) is the optimal solution to the problem of detecting a known activation signal in Gaussian white noise. The results of this test are shown to be equivalent to the cross-correlation method that is widely used for activation detection in fMRI. The second test (F test) is the optimal solution when the measured data are modeled to consist of an unknown activation signal that lies in a known lower dimensional subspace of the measurement space with added Gaussian white noise. A model for the signal subspace based on a truncated trigonometric Fourier series is proposed for periodic activation–baseline imaging paradigms. The advantage of the second method is that it does not assume any information about the shape or delay of the activation signal, except that it is periodic with the same period as the activation–baseline pattern. The two models are applied to experimental echo-planar fMRI data sets and the results are compared.  相似文献   

7.
The trust region method which originated from the Levenberg–Marquardt (LM) algorithm for mixed effect model estimation are considered in the context of second level functional magnetic resonance imaging (fMRI) data analysis. We first present the mathematical and optimization details of the method for the mixed effect model analysis, then we compare the proposed methods with the conventional expectation-maximization (EM) algorithm based on a series of datasets (synthetic and real human fMRI datasets). From simulation studies, we found a higher damping factor for the LM algorithm is better than lower damping factor for the fMRI data analysis. More importantly, in most cases, the expectation trust region algorithm is superior to the EM algorithm in terms of accuracy if the random effect variance is large. We also compare these algorithms on real human datasets which comprise repeated measures of fMRI in phased-encoded and random block experiment designs. We observed that the proposed method is faster in computation and robust to Gaussian noise for the fMRI analysis. The advantages and limitations of the suggested methods are discussed.  相似文献   

8.
Clinical applications of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) depend heavily on robust paradigms, imaging methods and analysis procedures. In this work, as a means to optimize and perform quality assurance of the entire imaging and analysis chain, a phantom that provides a well known and reproducible signal change similar to a block type fMRI experiment is presented. It consists of two gel compartments with slightly different T2 that dynamically enter and leave the imaged volume. The homogeneous gel in combination with a cylindrical geometry results in a well-defined T*2 difference causing a signal difference between the two compartments in T*2-weighted MR images. From time series data obtained with the phantom, maps of percent signal change (PSC) and t-values are calculated. As an example of image parameter optimisation, the phantom is demonstrated to be useful for accurate determination of the influence of echo time (TE) on BOLD fMRI results, taking the t-value as a measure of sensitivity. In addition, the phantom is proposed as a tool for quality assurance (QA) since reproducible time series and t-maps are obtained in a series of independent repeat experiments. The phantom is relatively simple to build and can therefore be used by any clinical fMRI center.  相似文献   

9.
Functional magnetic resonance imaging (fMRI) is an effective tool for the measurement of brain neuronal activities. To date, several statistical methods have been proposed for analyzing fMRI datasets to select true active voxels among all the voxels appear to be positively activated. Finding a reliable and valid activation map is very important and becomes more crucial in clinical and neurosurgical investigations of single fMRI data, especially when pre-surgical planning requires accurate lateralization index as well as a precise localization of activation map.Defining a proper threshold to determine true activated regions, using common statistical processes, is a challenging task. This is due to a number of variation sources such as noise, artifacts, and physiological fluctuations in time series of fMRI data which affect spatial distribution of noise in an expected uniform activated region. Spatial smoothing methods are frequently used as a preprocessing step to reduce the effect of noise and artifacts. The smoothing may lead to a shift and enlargement of activation regions, and in some extend, unification of distinct regions.In this article, we propose a bootstrap resampling technique for analyzing single fMRI dataset with the aim of finding more accurate and reliable activated regions. This method can remove false positive voxels and present high localization accuracy in activation map without any spatial smoothing and statistical threshold setting.  相似文献   

10.
The accurate mapping of functional magnetic resonance imaging (fMRI) activations to anatomical structures is critical for fMRI studies of brain organization. In the commonly used functional space analysis method, functional images are realigned to a functional reference image and processed in low-resolution functional space. The average functional activations are then projected into high-resolution anatomical space for visualization. Here, we describe a new technique, anatomical space analysis (ASA), whereby low-resolution functional images are first coregistered and resampled directly into high-resolution anatomical space with all subsequent data processing performed in high-resolution space. A major advantage of ASA is that minor scanner sampling instabilities and small head movements can increase spatial resolution by providing multiple samples of the relationship between functional and anatomical space. Both simulations and analyses of real fMRI data show that ASA improves the precision, objectivity and reproducibility of functional brain mapping.  相似文献   

11.
The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have a substantial effect on the performance of multivariate methods.

Here, we describe a novel approach for data-driven analysis of single-subject fMRI time series that combines techniques for the segmentation and reconstruction of the cortical surface of the brain and the spatial independent component analysis (sICA) of the functional time courses (TCs). We use the mesh of the white matter/gray matter boundary, automatically reconstructed from high-spatial-resolution anatomical MR images, to limit the sICA decomposition of a coregistered functional time series to those voxels which are within a specified region with respect to the cortical sheet (cortex-based ICA, or cbICA). We illustrate our analysis method in the context of fMRI blocked and event-related experimental designs and in an fMRI experiment with perceptually ambiguous stimulation, in which an a priori specification of the stimulation protocol is not possible.

A comparison between cbICA and conventional hypothesis-driven statistical methods shows that cortical surface maps and component TCs blindly obtained with cbICA reliably reflect task-related spatiotemporal activation patterns. Furthermore, the advantages of using cbICA when the specification of a temporal model of the expected hemodynamic response is not straightforward are illustrated and discussed. A comparison between cbICA and anatomically unconstrained ICA reveals that — beside reducing computational demand — the cortex-based approach improves the fitting of the ICA model in the gray matter voxels, the separation of cortical components and the estimation of their TCs, particularly in the case of fMRI data sets with a complex spatiotemporal statistical structure.  相似文献   


12.
非线性时间序列的动力结构突变检测的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
基于非线性时间序列分析方法——动力学相关因子指数,提出一种新的动力结构突变的检测方法——动力学指数分割算法.通过理想时间序列试验,验证了该方法检测动力结构突变的有效性,同时发现相对少量的尖峰噪声对该方法的影响较小,但连续分布的随机白噪声对其具有一定的影响,并与传统的滑动T检验法和Yamamoto法进行比较,进而讨论它们各自的优缺点. 关键词: 动力学相关因子指数 动力学指数分割算法 噪声 滑动T检验 Yamamoto法  相似文献   

13.
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a √R loss in SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data, respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI selection, most likely due to the inherently low SNR of functional perfusion data.  相似文献   

14.
There has been vast interest in determining the feasibility of functional magnetic resonance imaging (fMRI) as an accurate method of imaging brain function for patient evaluations. The assessment of fMRI as an accurate tool for activation localization largely depends on the software used to process the time series data. The performance evaluation of different analysis tools is not reliable unless truths in motion and activation are known. Lack of valid truths has been the limiting factor for comparisons of different algorithms. Until now, currently available phantom data do not include comprehensive accounts of head motion. While most fMRI studies assume no interslice motion during the time series acquisition in fMRI data acquired using a multislice and single-shot echo-planar imaging sequence, each slice is subject to a different set of motion parameters. In this study, in addition to known three-dimensional motion parameters applied to each slice, included in the time series computation are geometric distortion from field inhomogeneity and spin saturation effect as a result of out-of-plane head motion. We investigated the effect of these head motion-related artifacts and present a validation of the mapping slice-to-volume (MSV) algorithm for motion correction and activation detection against the known truths. MSV was evaluated, and showed better performance in comparison with other widely used fMRI data processing software, which corrects for head motion with a volume-to-volume realignment method. Furthermore, improvement in signal detection was observed with the implementation of the geometric distortion correction and spin saturation effect compensation features in MSV.  相似文献   

15.
A noisy version of independent component analysis (noisy ICA) is applied to simulated and real functional magnetic resonance imaging (fMRI) data. The noise covariance is explicitly modeled by an autoregressive (AR) model of order 1. The unmixing matrix of the data is determined using a variant of the FastICA algorithm based on Gaussian moments. The sources are estimated using the principle of maximum likelihood by modeling the source densities as asymmetric exponential functions. Effect of dimensionality reduction on the effective noise covariance used, accuracy of the obtained mixing matrix and degree of improvement in estimating fMRI sources are investigated. The primary conclusions after using this method of evaluation are as follows: (a) weighting matrix estimates are similar for noisy and conventional ICA in the realm of typical fMRI data, and (b) source estimates are improved by 5% (as measured by the correlation coefficient) in realistic simulated data by explicitly modeling the source densities and the noise, even when just a simple white noise model is used.  相似文献   

16.
A double inversion-recovery (DIR) sequence with an echo-planar imaging (EPI) readout can be used to image selectively the grey matter of the brain, and this has previously been applied to improve the sensitivity of the statistical analysis of functional magnetic resonance imaging (fMRI) data. If a procedure were to be implemented to remove the distortions that are inherent in the EPI-based fMRI data set, then a similar technique would have to be applied to the DIR-EPI image also to ensure that it matches the geometry of the functional data. A comparison of candidate methodologies for correcting distortions in DIR-EPI images, based on the reversed-gradient method, is presented. A corrected image could be calculated from two DIR-EPI images acquired with k-space traversal in opposite directions, but that method was not able to cope with the large regions of low signal intensity corresponding to the nulled white matter. It was found that the optimal procedure to apply the reversed-gradient method to DIR-EPI images was to acquire two additional EPI images (without the two inversion pulses) with opposite-direction k-space traversal; the distortion-correction information calculated from those EPI images was then applied to the DIR-EPI data.  相似文献   

17.
Exploratory data-driven methods such as Fuzzy clustering analysis (FCA) and Principal component analysis (PCA) may be considered as hypothesis-generating procedures that are complementary to the hypothesis-led statistical inferential methods in functional magnetic resonance imaging (fMRI). Here, a comparison between FCA and PCA is presented in a systematic fMRI study, with MR data acquired under the null condition, i.e., no activation, with different noise contributions and simulated, varying "activation." The contrast-to-noise (CNR) ratio ranged between 1-10. We found that if fMRI data are corrupted by scanner noise only, FCA and PCA show comparable performance. In the presence of other sources of signal variation (e.g., physiological noise), FCA outperforms PCA in the entire CNR range of interest in fMRI, particularly for low CNR values. The comparison method that we introduced may be used to assess other exploratory approaches such as independent component analysis or neural network-based techniques.  相似文献   

18.
Computer simulations have played a critical role in functional magnetic resonance imaging (fMRI) research, notably in the validation of new data analysis methods. Many approaches have been used to generate fMRI simulations, but there is currently no generic framework to assess how realistic each one of these approaches may be. In this article, a statistical technique called parametric bootstrap was used to generate a simulation database that mimicked the parameters found in a real database, which comprised 40 subjects and five tasks. The simulations were evaluated by comparing the distributions of a battery of statistical measures between the real and simulated databases. Two popular simulation models were evaluated for the first time by applying the bootstrap framework. The first model was an additive mixture of multiple components and the second one implemented a non-linear motion process. In both models, the simulated components included the following brain dynamics: a baseline, physiological noise, neural activation and random noise. These models were found to successfully reproduce the relative variance of the components and the temporal autocorrelation of the fMRI time series. By contrast, the level of spatial autocorrelation was found to be drastically low using the additive model. Interestingly, the motion process in the second model intrisically generated some slow time drifts and increased the level of spatial autocorrelations. These experiments demonstrated that the bootstrap framework is a powerful new tool that can pinpoint the respective strengths and limitations of simulation models.  相似文献   

19.
Magnetic resonance images acquired with high temporal resolution often exhibit large noise artifacts, which arise from physiological sources as well as from the acquisition hardware. These artifacts can be detrimental to the quality and interpretation of the time-course data in functional MRI studies. A class of wavelet-domain de-noising algorithms estimates the underlying, noise-free signal by thresholding (or 'shrinking') the wavelet coefficients, assuming the underlying temporal noise of each pixel is uncorrelated and Gaussian. A Wiener-type shrinkage algorithm is developed in this paper, for de-noising either complex- or magnitude-valued image data sequences. Using the de-correlation properties of the wavelet transform, as elucidated by Johnstone and Silverman, the assumption of i.i.d. Gaussian noise can be abandoned, opening up the possibility of removing colored noise. Both wavelet- and wavelet-packet based algorithms are developed, and the Wiener method is compared to the traditional Hard and Soft wavelet thresholding methods of Donoho and Johnstone. The methods are applied to two types of data sets. In the first, an artificial set of complex-valued images was constructed, in which each pixel has a simulated bimodal time-course. Gaussian noise was added to each of the real and imaginary channels, and the noise removed from the complex image sequence as well as the magnitude image sequence (where the noise is Rician). The bias and variance between the original and restored paradigms was estimated for each method. It was found that the Wiener method gives better balance in bias and variance than either Hard or Soft methods. Furthermore, de-noising magnitude data provides comparable accuracy of the restored images to that obtained from de-noising complex data. In the second data set, an actual in vivo complex image sequence containing unknown physiological and instrumental noise was used. The same bimodal paradigm as in the first data set was added to pixels in a small localized region of interest. For the paradigm investigated here, the smooth Daubechies wavelets provide better de-noising characteristics than the discontinuous Haar wavelets. Also, it was found that wavelet packet de-noising offers no significant improvement over the computationally more efficient wavelet de-noising methods. For the in vivo data, it is desirable that the groups of "activated" time-courses are homogeneous. It was found that the internal homogeneity of the group of time-courses increases when de-noising is applied. This suggests using de-noising as a pre-processing tool for both exploratory and inferential data analysis methods in fMRI.  相似文献   

20.
The quality of fMRI data impacts functional connectivity measures and consequently, the decisions that clinicians and researchers make regarding functional connectivity interpretation. The present study used resting state fMRI to investigate resting state network connectivity in a sample of patients with Juvenile Absence Epilepsy. Single-subject manual independent component analysis was used in two levels, whereby all noise components were removed, and cerebrospinal fluid pulsation components only were isolated and removed. Improved temporal signal to noise ratios and functional connectivity metrics were observed in each of the cleaning levels for both epilepsy and control cohorts. Results showed full, single-subject manual independent component analysis reduced the number of functional connectivity correlations and increased the strength of these correlations. Similar effects were also observed for the cerebrospinal fluid pulsation only cleaned data relative to the uncleaned, and fully cleaned data. Single-subject manual independent component analysis coupled with short TR multiband acquisition can significantly improve the validity of findings derived from fMRI data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号