首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Studying quantum properties in solid-state systems is a significant avenue for research. In this scenario, double quantum dots appear as a versatile platform for technological breakthroughs in quantum computation and nanotechnology. This work inspects the thermal entanglement and quantum coherence in two-coupled DODs, where the system is exposed to an external stimulus that induces an electronic transition within each subsystem. The results show that the introduction of external stimulus induces a quantum level crossing that relies upon the Coulomb potential changing the degree of quantum entanglement and coherence of the system. Thus, the quantum properties of the system can be tuned by changing the transition frequency, leading to the enhancement of its quantum properties.  相似文献   

2.
二维电子光谱是探测复杂系统激发态相干动力学的重要工具,实现二维电子光谱测试的最大挑战是精确控制多束超短脉冲之间的相位差. 本综述回顾了利用主动相位管理方法实现二维电子光谱仪装置,主要包括干涉仪相位稳定、声光调制器进行频率标记和多光频梳等三类方法;结合四波混频、泵浦探测及完全共线等不同构型,能实现高时空分辨及量子跃迁通道选择的二维光谱检测. 超短脉冲技术与主动相位调控的结合实现二维电子光谱学方法,为研究激发态相干动力学提供新的机遇.  相似文献   

3.
We have performed low-temperature transport measurements on a disordered two-dimensional electron system (2DES). Features of the strong localization leading to the quantum Hall effect are observed after the 2DES undergoes a direct insulator–quantum Hall transition on increasing the perpendicular magnetic field. However, such a transition does not correspond to the onset of strong localization. The temperature dependences of the Hall resistivity and Hall conductivity reveal the importance of the electron–electron interaction effects for the observed transition in our study.  相似文献   

4.
Coherent exciton-phonon coupling in CdSe/ZnS nanocrystals have been investigated by temperature-dependent two-dimensional electronic spectroscopy (2DES) measurements. Benefiting from the ability of 2DES to dissect assembles in nanocrystal films, we have clearly identified experimental evidences of coherent coupling between exciton and phonon in CdSe/ZnS nanocrystals. In time domain, 2DES signals of excitonic transitions beat at a frequency resonant to a longitudinal optical phonon mode; in energy domain, phonon side bands are distinct at both Stokes and anti-Stokes sides. When temperature increases, phonon-induced exciton dephasing is observed with dramatic broadening of homogeneous linewidth. The results suggest exciton-phonon coupling is essential in elucidating the quantum dynamics of excitonic transitions in semiconductor nanocrystals.  相似文献   

5.
The quantum coherence and correlation dynamics for a two-qubit system in the Ising spin-chain environment are studied. A sudden change of coherence is found near the critical point, which provides us with an effective way to detect the quantum phase transition. By studying the relationship between quantum discord and coherence, we find that coherence displays the behavior of classical correlation for t t_0, and of quantum discord for t t_0, where t_0 is the time-point of a sudden transition between classical and quantum decoherence.  相似文献   

6.
Electronic states in solids with disorder give rise to an elastic (Rayleigh) contribution to the scattering spectrum which becomes resonantly enhanced for excitation in the electronic transition. It is shown theoretically that from this resonant Rayleigh process, if temporally resolved, the coherence time of the electronic states may be deduced. Experimentally this is demonstrated for the first time by studying the n = 1 heavy-hole exciton in GaAs/AlGaAs quantum well structures. Employing picosecond time-resolved spectroscopy and analyzing the data within the developed theory, coherence times are found between 5 and 30 ps in agreement with earlier results obtained by non-linear optical techniques.  相似文献   

7.
We present the results of quantumchemical investigation of energy transfer in organic molecules and systems and the inferences drawn. The Förster theory has been subjected to a critical analysis in order that the energy transfer could be described in the context of the current theory of nonradiative transitions and the incorrectness of the basic premises of the Förster theory has been demonstrated. A new variant of the mechanism of electronic energy transfer on the basis of the theory of electron transitions and of the quantum mechanics of molecules has been suggested. It is shown that the interaction of the molecules of the donor and acceptor perturbs the electronic states of isolated molecules even before the excitation of the donor molecule. A characteristic feature of the manifestation of intermolecular interaction is the spatial delocalization of the wave functions of the electronic states of interacting molecules, leading to the possibility of occurrence of conventional photophysical processes with participation of the electronic states of various molecules of the bimolecular system. In experimental investigations, the result of the intermolecular nonradiative transition is recorded as evidence of the spatial transfer of the energy of electronic excitation from the donor molecule to the acceptor molecule.  相似文献   

8.
Atomically thin transition metal dichalcogenide films with distorted trigonal(1T') phase have been predicted to be candidates for realizing quantum spin Hall effect. Growth of 1T' film and experimental investigation of its electronic structure are critical. Here we report the electronic structure of 1T'-MoTe_2 films grown by molecular beam epitaxy(MBE).Growth of the 1T'-MoTe_2 film depends critically on the substrate temperature, and successful growth of the film is indicated by streaky stripes in the reflection high energy electron diffraction(RHEED) and sharp diffraction spots in the low energy electron diffraction(LEED). Angle-resolved photoemission spectroscopy(ARPES) measurements reveal a metallic behavior in the as-grown film with an overlap between the conduction and valence bands. First principles calculation suggests that a suitable tensile strain along the a-axis direction is needed to induce a gap to make it an insulator. Our work not only reports the electronic structure of MBE grown 1T'-MoTe_2 films, but also provides insights for strain engineering to make it possible for quantum spin Hall effect.  相似文献   

9.
The electronic energy spectra of aperiodic Thue-Morse, Rudin-Shapiro, and double-periodic quantum dot chains are investigated in the tight-binding approximation. The dependence of the spectrum on all parameters of a “mixed” aperiodic chain model is studied: the electronic energy at quantum dots and the hopping integrals. The electronic degree of localization in the chains under consideration is determined by analyzing the inverse participation ratio. Its spectral distribution and the dependence of the band-averaged degree of localization on these model parameters have been calculated. It is shown that a transition of the system’s sites to a resonant state in which the degree of electron localization decreases, while an overlap between the subbands occurs in the spectrum is possible when the parameters are varied.  相似文献   

10.
无序双层六角氮化硼量子薄膜的电子性质   总被引:1,自引:0,他引:1       下载免费PDF全文
肖化平  陈元平  杨凯科  魏晓林  孙立忠  钟建新 《物理学报》2012,61(17):178101-178101
基于安德森紧束缚模型,本文研究了无序双层六角氮化硼量子薄膜的电子性质. 数值计算结果表明在双层都无序掺杂的情况下,六角氮化硼量子薄膜的电子是局域的, 其表现为绝缘体性质;而对于单层掺杂(无论是氮原子还是硼原子)的双层六角氮化硼量子薄膜, 在能谱的带尾出现了持续的迁移率边.这就说明在单层掺杂的双层六角氮化硼量子薄膜中产生了 金属绝缘体转变.这一结果证实了有序-无序分区掺杂的理论模型,为理解及调控双层六角氮化硼量子薄膜 的电子性质提供了有益的理论指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号