首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The topological hypothesis states that phase transitions should be related to changes in the topology of configuration space. The necessity of such changes has already been demonstrated. We characterize exactly the topology of the configuration space of the short range Berlin-Kac spherical model, for spins lying in hypercubic lattices of dimension d. We find a continuum of changes in the topology and also a finite number of discontinuities in some topological functions. We show, however, that these discontinuities do not coincide with the phase transitions which happen for d > or = 3, and conversely, that no topological discontinuity can be associated with them. This is the first short range, confining potential for which the existence of special topological changes are shown not to be sufficient to infer the occurrence of a phase transition.  相似文献   

2.
The relation between thermodynamic phase transitions in classical systems and topological changes in their configuration space is discussed for two physical models and contains the first exact analytic computation of a topologic invariant (the Euler characteristic) of certain submanifolds in the configuration space of two physical models. The models are the mean-field XY model and the one-dimensional XY model with nearest-neighbor interactions. The former model undergoes a second-order phase transition at a finite critical temperature while the latter has no phase transitions. The computation of this topologic invariant is performed within the framework of Morse theory. In both models topology changes in configuration space are present as the potential energy is varied; however, in the mean-field model there is a particularly strong topology change, corresponding to a big jump in the Euler characteristic, connected with the phase transition, which is absent in the one-dimensional model with no phase transition. The comparison between the two models has two major consequences: (i) it lends new and strong support to a recently proposed topological approach to the study of phase transitions; (ii) it allows us to conjecture which particular topology changes could entail a phase transition in general. We also discuss a simplified illustrative model of the topology changes connected to phase transitions using of two-dimensional surfaces, and a possible direct connection between topological invariants and thermodynamic quantities.  相似文献   

3.
T.K. Ng 《哲学杂志》2015,95(26):2918-2947
We provide an overview of some modern developments in the theory of phases and phase transitions in classical and quantum systems. We show the link between non-ergodicity and fidelity in quantum systems and discuss topological phase transitions. We show that the quantum phase transitions are associated with qualitative changes in some properties of the quantum wavefunctions across the phase transition. We discuss the topological phase transition associated with p-wave superconductor since it is a topic of wide interest because of the possible observation of Majorana fermions.  相似文献   

4.
The phase diagrams in the mixed spin-3/2 and spin-2 Ising system with two alternative layers on a honeycomb lattice are investigated and discussed by the use of the effective-field theory with correlations. The interaction of the nearest-neighbour spins of each layer is taken to be positive (ferromagnetic interaction) and the interaction of the adjacent spins of the nearest-neighbour layers is considered to be either positive or negative (ferromagnetic or anti-ferromagnetic interaction). The temperature dependence of the layer magnetizations of the system is examined to characterize the nature (continuous or discontinuous) of the phase transitions and obtain the phase transition temperatures. The system exhibits both second-and first-order phase transitions besides triple point (T P ), critical end point (E), multicritical point (A), isolated critical point (C) and reentrant behaviour depending on the interaction parameters. We have also studied the temperature dependence of the total magnetization to find the compensation points, as well as to determine the type of behaviour, and N-type behaviour in N′eel classification nomenclature existing in the system. The phase diagrams are constructed in eight different planes and it is found that the system also presents the compensation phenomena depending on the sign of the bilinear exchange interactions.  相似文献   

5.
In a p-spin interaction spherical spin-glass model both the spins and the couplings are allowed to change with time. The spins are coupled to a heat bath with temperature T, while the coupling constants are coupled to a bath having temperature TJ. In an adiabatic limit (where relaxation time of the couplings is much larger that of the spins) we construct a generalized two-temperature thermodynamics. It involves entropies of the spins and the coupling constants. The application for spin-glass systems leads to a standard replica theory with a non-vanishing number of replicas, n=T/T J . For p>2 there occur at low temperatures two different glassy phases, depending on the value of n. The obtained first-order transitions have positive latent heat, and positive discontinuity of the total entropy. This is an essentially non-equilibrium effect. The dynamical phase transition exists only for n<1. For p=2 correlation of the disorder (leading to a non-zero n) removes the known marginal stability of the spin glass phase. If the observation time is very large there occurs no finite-temperature spin glass phase. In this case there are analogies with the non-equilibrium (aging) dynamics. A generalized fluctuation-dissipation relation is derived. Received 12 July 1999 and Received in final form 8 December 1999  相似文献   

6.
The low energy behavior of the Kondo necklace model with an aperiodic exchange modulation is studied using a representation for the localized and conduction electron spins, in terms of local Kondo singlet and triplet operators at zero and finite temperature for arbitrary d dimensions. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. We determined the dependence between the chemical aperiodic exchange modulation and the spin gap in 1d, 2d and 3d, at zero temperature and in the paramagnetic side of the phase diagram. On the other hand, at low but finite temperatures, the line of Néel transitions in the antiferromagnetic phase is calculated in function of the aperiodic exchange modulation.  相似文献   

7.
The aim of this study is to analyse the stability of the single in-plane vortex state in two-dimensional magnetic nanodots with a nonmagnetic impurity (single-spin defect) at the centre. Small square and circular dots including up to a few thousand of spins are studied by means of a microscopic theory with nearest-neighbour exchange interactions and dipolar interactions fully taken into account. We calculate the spin-wave frequencies versus the dipolar-to-exchange interaction ratio d to find the values of d for which the assumed state is stable. Transitions to other states and their dependence on d and the vortex size are investigated as well, with two types of transition found: vortex core formation for small d values (strong exchange interactions), and in-plane reorientation of spins for large d values (strong dipolar interactions). Various types of localized spin waves responsible for these transitions are identified.  相似文献   

8.
We have discussed the zero-temperature quantum phase transition in n-component quantum rotor Hamiltonian in the presence of regular frustration in the interaction. The phase diagram consists of ferromagnetic, helical and quantum paramagnetic phase, where the ferro-para and the helical-para phase boundary meets at a multicritical point called a (d,m) quantum Lifshitz point where (d,m) indicates that the m of the d spatial dimensions incorporate frustration. We have studied the Hamiltonian in the vicinity of the quantum Lifshitz point in the spherical limit and also studied the renormalisation group flow behaviour using standard momentum space renormalisation technique (for finite n). In the spherical limit ()one finds that the helical phase does not exist in the presence of any nonvanishing quantum fluctuation for m =d though the quantum Lifshitz point exists for all d > 1+m/2, and the upper critical dimensionality is given by d u = 3 +m/2. The scaling behaviour in the neighbourhood of a quantum Lifshitz point in d dimensions is consistent with the behaviour near the classical Lifshitz point in (d+z) dimensions. The dynamical exponent of the quantum Hamiltonian z is unity in the case of anisotropic Lifshitz point (d>m) whereas z=2 in the case of isotropic Lifshitz point (d=m). We have evaluated all the exponents using the renormalisation flow equations along-with the scaling relations near the quantum Lifshitz point. We have also obtained the exponents in the spherical limit (). It has also been shown that the exponents in the spherical model are all related to those of the corresponding Gaussian model by Fisher renormalisation. Received: 23 December 1997 / Received in final form: 6 January 1998 / Accepted: 7 January 1998  相似文献   

9.
The sandwiched trilayer of Bethe lattices in the form of the spins with spin-(1/2,1,1/2) Ising model is studied in terms of the recursion relations with either ferromagnetic or antiferromagnetic type bilinear interactions between the nearest-neighbor (NN) spins. The ground-state (GS) phase diagrams are obtained and it was found that the model presents six different GS phase configurations. In order to obtain the phase diagrams, the thermal variations of the order-parameter, spin-spin correlation functions and free energy are analyzed and different topological phase diagrams are obtained. It was found that the system exhibits different critical behaviors such as, second- and first-order phase transitions, tricritical and bicritical points for the values of the coordination numbers q=3,4 and 6.  相似文献   

10.
We report on X-ray resonance exchange and neutron scattering of metallic GdS. At the LII and L III absorption edges of Gd, resonance enhancements of more than two orders of magnitude over the non-resonant magnetic scattering are observed. Polarisation analysis proves that these enhancements are due to dipolar transitions from the 2p to the 5d states. The branching ratio between the LII and L III edges of 2.5 suggests a polarisation of the 5d electrons in the ground state. The antiferromagnetic order is of type II in the fcc lattice. Single crystal diffraction of hot neutrons suggests that the spin direction lies within the (111) planes with a value for the sublattice magnetisation of 6.51(3) . The critical exponent for the sublattice magnetisation has a value of β = 0.38(2) in agreement with a pure Heisenberg model. Above T N, a sharp component persists in the critical diffuse scattering. Lattice distortions give indications for two additional low-temperature phase transitions at about 49 K and 32 K. We argue that these transitions are not connected to spin reorientations and discuss the possible influence of fourth-order exchange interactions. Received 19 November 1999 and Received in final form 12 December 2000  相似文献   

11.
This is the second of two papers on a continuum version of the Potts model, where particles are points in ℝ d , d≥2, with a spin which may take S≥3 possible values. Particles with different spins repel each other via a Kac pair potential of range γ −1, γ>0. In this paper we prove phase transition, namely we prove that if the scaling parameter of the Kac potential is suitably small, given any temperature there is a value of the chemical potential such that at the given temperature and chemical potential there exist S+1 mutually distinct DLR measures.  相似文献   

12.
We consider a class of spin systems on ℤ d with vector valued spins (S x ) that interact via the pair-potentials J x,y S x S y . The interactions are generally spread-out in the sense that the J x,y 's exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d≥3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d = 1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique “state,” then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.  相似文献   

13.
&#  m&#  t Temizer  Ay&#  eg&#  l &#  zk&#  l&#  &# 《中国物理 B》2013,22(3):37501-037501
We present a study of the dynamic behavior of a two-sublattice spin-5/2 Ising model with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on alternate layers of a hexagonal lattice by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=5/2 and S=5/2. We employ the Glauber transition rates to construct the mean-field dynamic equations. First, we investigate the time variations of the average sublattice magnetizations to find the phases in the system and then the thermal behavior of the dynamic sublattice magnetizations to characterize the nature (first- or second-order) of the phase transitions and to obtain the dynamic phase transition (DPT) points. We also study the thermal behavior of the dynamic total magnetization to find the dynamic compensation temperature and to determine the type of the dynamic compensation behavior. We present the dynamic phase diagrams, including the dynamic compensation temperatures, in nine different planes. The phase diagrams contain seven different fundamental phases, thirteen different mixed phases, in which the binary and ternary combination of fundamental phases and the compensation temperature or the L-type behavior strongly depend on the interaction parameters.  相似文献   

14.
In these notes we present a summary of existing ideas about phase transitions of black hole spacetimes in semiclassical gravity and offer some thoughts on three possible scenarios or mechanisms by which these transitions could take place. We begin with a review of the thermodynamics of a black hole system and emphasize that the phase transition is driven by the large entropy of the black hole horizon. Our first theme is illustrated by a quantum atomic black hole system, generalizing to finite-temperature a model originally offered by Bekenstein. In this equilibrium atomic model, the black hole phase transition is realized as the abrupt excitation of a high energy state, suggesting analogies with the study of two-level atoms. Our second theme argues that the black hole system shares similarities with the defect-mediated Kosterlitz–Thouless transition in condensed matter. These similarities suggest that the black hole phase transition may be more fully understood by focusing upon the dynamics of black holes and white holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we compare the black hole phase transition to another transition driven by an (exponentially) increasing density of states, the Hagedorn transition first found in hadron physics in the context of dual models or the old string theory. In modern string theory the Hagedorn transition is linked by the Maldacena conjecture to the Hawking–Page black hole phase transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics of the Hagedorn transition may yield insight into the dynamics of the black hole phase transition. We argue that characteristics of the Hagedorn transition are already contained within the dynamics of classical string systems. Our third theme points to carrying out a full nonperturbative and nonequilibrium analysis of the large N behavior of classical SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena conjecture we can then gain valuable insight into black hole phase transitions in AdS space.  相似文献   

15.
In this paper we propose an exactly solvable model of a topological insulator defined on a spin- \(\tfrac{1}{2}\) square decorated lattice. Itinerant fermions defined in the framework of the Haldane model interact via the Kitaev interaction with spin- \(\tfrac{1}{2}\) Kitaev sublattice. The presented model, whose ground state is a non-trivial topological phase, is solved exactly. We have found out that various phase transitions without gap closing at the topological phase transition point outline the separate states with different topological numbers. We provide a detailed analysis of the model’s ground-state phase diagram and demonstrate how quantum phase transitions between topological states arise. We have found that the states with both the same and different topological numbers are all separated by the quantum phase transition without gap closing. The transition between topological phases is accompanied by a rearrangement of the spin subsystem’s spectrum from band to flat-band states.  相似文献   

16.
Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.  相似文献   

17.
The equivalent neighbour (EN) model of interacting continuous spherically symmetric spins with the length equal or smaller than unity is solved exactly for all values of the spin dimensionality, D. A surprising result is that only for D 628 the system undergoes phase transitions at temperatures lower than those of the EN model of interacting spins with the hypercubic symmetry. In the D → ∞ limit the equation of state in zero field is derived analytically and gives the Landau type behaviour in the whole range of temperatures.  相似文献   

18.
A hypercubic d-dimensional lattice of spins with nearest neighbor ferromagnetic coupling and next nearest neighbor antiferromagnetic coupling along a single axis is studied in the spherical model limit (n→∞) and is found to exhibit a multicritical point of the uniaxial Lifshitz type. The shape of the λ line is calculated explicitly in the vicinity of the multicritical point, and analytic expressions are given for the shift exponent ψ(d) and its amplitudes A±(d). The amplitude A_(d) changes sign for d = 3.  相似文献   

19.
Quantum phase transitions in a system of N bosons with angular momentum L = 0, 2 (s, d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)–SU(3) (spherical to axially-deformed) transition in odd–even nuclei is presented.  相似文献   

20.
A new numerical method is used to study the ground-state properties of the spinless Falicov-Kimball model in one and two dimensions. The resultant solutions are used to examine the phase diagram of the model as well as possibilities for valence and metal-insulator transitions. In one dimension a comprehensive phase diagram of the model is presented. On the base of this phase diagram, the complete picture of valence and metal-insulator transitions is discussed. In two dimensions the structure of ground-state configurations is described for intermediate interactions between f and d electrons. In this region the phase separation and metal-insulator transitions are found at low f-electron concentrations. It is shown that valence transitions exhibit a staircase structure. Received 20 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号