首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vanadium-doped Zn2SiO4 particles embedded in silica host matrix were prepared by a simple solid-phase reaction under natural atmosphere at 1200 °C after the incorporation of ZnO:V nanoparticles in silica monolith using sol-gel method with supercritical drying of ethyl alcohol in two steps. The obtained sample, exhibits a strong PL band in the visible range at 540 nm and two thin emission lines in the UV range at 394 and 396 nm under intensive power excitation. Photoluminescence excitation (PLE) measurements show different origins of the emission bands. It is suggested that radiative defects attributed to vanadium in the interfaces between Zn2SiO4 particles and SiO2 host matrix resulting from heat treatment and zinc oxide excitonic emissions, were responsible for theses luminescence bands.  相似文献   

2.
Luminescent SiO2 films containing Ge nanocrystals are fabricated by using Ge ion implantation, and metal–oxide–semiconductor structures employing these films as the active layers show yellow electroluminescence (EL) under both forward and reverse biases. The EL spectra are strongly dependent on the applied voltage, but slightly on the mean size of Ge nanocrystals. When the forward bias increases towards 30 V, the EL spectral peak shifts from 590 nm to 485 nm. It is assumed that the EL originates from the recombination of injected electrons and holes in Ge nanocrystals near the Si/SiO2 interface, or through luminescent centers in the SiO2 matrix near the SiO2/metal interface. The mismatch of the injection amounts between holes and electrons results in the low EL efficiency. Received: 28 February 2000 / Accepted: 28 March 2000 / Published online: 5 July 2000  相似文献   

3.
Germanosilicate layers were grown on Si substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed at different temperatures ranging from 700–1010 °C for durations of 5 to 60 min. Transmission electron microscopy (TEM) was used to investigate Ge nanocrystal formation in SiO2:Ge films. High-resolution cross section TEM images, electron energy-loss spectroscopy and energy dispersive X-ray analysis (EDX) data indicate that Ge nanocrystals are present in the amorphous silicon dioxide films. These nanocrystals are formed in two spatially separated layers with average sizes of 15 and 50 nm, respectively. EDX analysis indicates that Ge also diffuses into the Si substrate. PACS 68.73.Lp; 61.46.Hk; 61.46.-w; 68.65.Hb; 61.82.Rx  相似文献   

4.
Undoped and vanadium-doped Zn2SiO4 particles embedded in silica host matrix were prepared by a simple solid-phase reaction after the incorporation of ZnO and ZnO:V nanoparticles, respectively, in silica monolith using the sol–gel method with supercritical drying of ethyl alcohol in two steps. After supercritical drying and annealing in the temperature range between 1423 and 1473 K in an air atmosphere, the photoluminescence (PL) measurements show a band centered at about 760 nm in the case of non-doped Zn2SiO4 which is attributed to energy transfer from Zn2SiO4 particles to NBOHs interface defects. In the case of vanadium doped Zn2SiO4, the PL reveals a band centered at about 540 nm attributed to the vanadium in the interfaces between Zn2SiO4 particles and SiO2 host matrix. Photoluminescence excitation (PLE) measurements show different origins of the emission bands. The PLE band (~240–350 nm) may be understood as an energy transfer process from O2? to V5+ which occurs intrinsically in the vanadyl group.  相似文献   

5.
We systematically investigated the photoluminescence (PL) and transmittance characteristics of ZnO-SiO2 opals with varied positions of the stop-band and film thicknesses. An improved ultraviolet (UV) luminescence was observed from ZnO-SiO2 composites over pure ZnO nanocrystals under 325 nm He-Cd laser excitation at room temperature. The UV PL of ZnO nanocrystals in SiO2 opals with stop-bands center of 410 nm is sensitive to the thickness of opal films, and the UV PL intensity increases with the film thickness increasing. The PL spectra of ZnO nanocrystals in SiO2 opals with stop-bands center of 570 nm show a suppression of the weak visible band. The experimental results are discussed based on the scattering and/or absorbance in opal crystals.  相似文献   

6.
This paper deals with the sol-gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ∼30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400-600 and 700-900 nm in 78-300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400-600 and 700-900 nm, respectively.  相似文献   

7.
(Ge:SiO2)/SiO2 multilayers were fabricated for exploring the influence of the stress on the structure of Ge nanocrystals. When annealed at 800 °C, the multilayers show a clear splitting (fine structure) of the Ge (220) X-ray diffraction peak and have a preferred orientation. Similar effects cannot take place in the multilayers annealed at higher or lower temperature. Analyses of Raman scattering, X-ray diffraction spectroscopy, and transmission electron microscope observations suggest that the observed phenomena arise from compressive stress exerted on Ge nanocrystals, which is induced by the confinement of both the SiO2 matrix in the cosputtered layer and neighboring SiO2 layers. The stress may cause an orthorhombic distortion of the diamond structure of bulk Ge. This will lead to the disappearance of the (111) and (311) diffraction peaks and the splitting of the (220) peak. This kind of (Ge:SiO2)/SiO2 multilayers enables us to control the sizes of the Ge crystallites and enhance the stress, and is thus promising in forming new nanocrystal structures.  相似文献   

8.
The photoluminescence of Er3+ ions in a SiO2 matrix containing silicon nanocrystals 3.5 nm in diameter is studied under resonant and nonresonant pulsed pumping with pulses 5 ns in duration. The effective erbium excitation cross section under pulsed pumping, σeff = 8.7 × 10?17 cm2, is close to that for nanocrystals. Comparison of the erbium photoluminescence intensity obtained for a SiO2 matrix with and without nanocrystals made it possible to determine the absolute concentration of optically active nanocrystals capable of exciting erbium ions, the concentration of optically active erbium, and the average number of erbium ions excited by one nanocrystal. The study revealed that excitation transfer from one erbium ion to another is a relatively slow process, which accounts for the low efficiency of erbium ion excitation under pulsed pumping in a SiO2 matrix containing silicon nanocrystals.  相似文献   

9.
Optical transitions in Ge nanocrystals formed by high-pressure annealing of the Ge+ ion implanted SiO2 films have been studied by Raman and photoluminescence spectroscopy. It has been found that the E1,E1+Δ1 Raman resonance shift observed from the unstrained and hydrostatically compressed nanocrystals corresponds to the quantization of the electron-hole state spectrum of the Ge band. It has also been established that the appearance of a green photoluminescence band centered at 420-520 nm correlates with the formation of strained nanocrystals. Comparisons of the PL data with HRTEM results have been made, which suggest that the green PL arises from strained Ge nanocrystals of a radius of less than 5 nm. The direct electron-hole recombination at Γ is discussed as a possible origin of the observed photoluminescence band.  相似文献   

10.
SiGeO films were deposited by LPCVD using Si2H6, GeH4 and O2 as reactive gases and furnace annealed to segregate the possible excess of Si and Ge in the form of nanocrystals embedded in an oxide matrix. For low GeH4:Si2H6 flow ratios and deposition temperatures of 450 °C or lower, the deposited film consists of a SiO2 matrix incorporating Ge. No Ge oxides and no nanocrystals are detected. After annealing of the samples with SiO2 matrices at temperatures of 600 °C or higher, quasi-spherical isolated Ge nanocrystals with diameters ranging from 4.5 to 9 nm and homogeneously distributed throughout the whole film thickness are formed. In the samples deposited with low GeH4:Si2H6 flow ratios, the original SiO2 matrix holds its composition.  相似文献   

11.
Silicon nanocrystals were prepared by Si+-ion implantation and subsequent annealing of SiO2 films thermally grown on a c-Si wafer. Different implantation energies (20-150 keV) and doses - cm -2 ) were used in order to achieve flat implantation profiles (through the thickness of about 100 nm) with a peak concentration of Si atoms of 5, 7, 10 and 15 atomic%. The presence of Si nanocrystals was verified by transmission electron microscopy. The samples exhibit strong visible/IR photoluminescence (PL) with decay time of the order of tens of μs at room temperature. The changes of PL in the range 70-300 K can be well explained by the exciton singlet-triplet splitting model. We show that all PL characteristics (efficiency, dynamics, temperature dependence, excitation spectra) of our Si+-implanted SiO2 films bear close resemblance to those of a light-emitting porous Si and therefore we suppose similar PL origin in both materials. Received 1st September 1998 and Received in final form 7 September 1999  相似文献   

12.
The phase separation in amorphous silicon suboxide (a-SiOx) films upon thermal annealing for the formation of light emitting silicon nanocrystals (Si-NCs) was studied through the correlation of photoluminescence (PL) and photoluminescence excitation (PLE) with structural and optical properties. The PL and PLE features and the structural and optical properties show a strong dependence on the annealing process and reveal that the precipitation of the excess Si in a-SiOx and the formation of Si-NCs from the precipitated Si are two separate processes which should be distinguished in the phase separation in a-SiOx. They proceed at different temperatures and the formation of Si-NCs is a slow process compared with the precipitation of the excess Si. The nanocrystal size and size distribution evolve with annealing time at the initial stages and are mainly dependent on annealing temperature for a certain O content in the initial a-SiOx with the density of the formed Si-NCs increasing with longer annealing duration.  相似文献   

13.
用巯基乙酸作稳定剂制备CdSe纳米晶的光学性质   总被引:5,自引:1,他引:4  
Wageh S  刘舒曼  徐叙瑢 《发光学报》2002,23(2):145-151
以巯基乙酸为稳定剂制备了CdSe纳米晶,通过尺寸选择沉淀得到2nm到3nm之间不同尺寸的纳米晶,利用室温光吸收,光致发光(PL)和光致发光激发(PLE)谱来研究了CdSe纳米团簇的光学性质。紫外-可见吸收谱给了具有清晰激光特征的尖锐吸收边,这表明样品的尺寸分布很窄。光致发光研究表明,样品有两个发射带,一个具有较高能量位于吸收边,来自电子-空穴对从最低激发态能级弛豫后的辐射复合,另一个低能发射带归属于基质与纳米晶界面存在的俘获中心。PLE谱中有2个吸收带,分别是S-S和P-P跃迁。最后还给出了不同激发能量下的发光特性。  相似文献   

14.
Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5 nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2 (probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.  相似文献   

15.
The photoluminescence (PL) emission yield of Si nanocrystals embedded in SiO2 depends on their size and on Si–SiO2 interface passivation. In this work we aim at clarifying the relative importance of both contributions by studying lifetimes and absorption cross-sections as a function of size, for samples with and without passivation in forming gas. We find that while the PL lifetime increases steadily (quasi-linear dependence), the radiative lifetime increases exponentially with the nanocrystal size. Thus, as expected, radiative oscillator strengths are much smaller for large nanocrystals, but this reduction is partially compensated by a less effective quenching at interfacial non-radiative states. The absorption cross-section per nanocrystal rises as the nanocrystal size decreases, for all excitation wavelengths, implying that the variation of oscillator strength dominates over the reduction of the density of states. Passivation processes do not affect the emission mechanism and increase the emission yield while reducing the density of non-radiative recombination centers at the Si–SiO2 interface (Pb centers).  相似文献   

16.
GeO2 films with germanium nanocrystals (NCs) were deposited from supersaturated GeO vapor with subsequent dissociation on Ge:GeO2. The films were studied using photoluminescence (PL), Raman scattering, IRspectroscopy techniques. Ge NCs in initial film have sizes about 6–8 nm and have no visible PL signal. The broad green-red PL peak was detected in Ge:GeO2 films after thermal annealings. According to effective mass approach, maximum of PL signal from such relatively big Ge NCs should be in IR region. The experimentally observed PL signal is presumably originated due to quasi-direct L 1-L 3’ optical transitions “folded” in germanium NCs. The article is published in the original.  相似文献   

17.
Controllable size of silicon (Si) nanocrystals can be achieved by a two-step rapid thermal annealing technique consisting of rapid annealing at 1000°C in nitrogen ambient and rapid oxidation at 600–800°C of a radio frequency magnetron co-sputtered Si-rich oxide/SiO2 superlattice structure. The photoluminescence (PL) spectra related to Si nanocrystals were observed in the visible range (600–900 nm). After rapid oxidation, the size of the nanocrystals was reduced and the quality of the Si nanocrystal/SiO2 interface was improved, resulting in a blue shift and an increase of the PL peak intensity. Finally, annealing in air increases the PL intensity further.  相似文献   

18.
We have used ion-beam mixing to form Si nano-crystals in SiO2 and SiO2/Si multilayers, and applied photoluminescence and soft-X-ray emission spectroscopy to study the nanoparticles. Ion-beam mixing followed by heat treatment at 1100 °C for 2 h forms the Si nanocrystals. The ion-beam-mixed sample shows higher PL intensity than that of a Si-implanted SiO2 film. Photon and electron-excited Si L2,3 X-ray emission measurements were carried out to confirm the formation of Si nanocrystal in SiO2 matrix after ion-beam mixing and heat treatment. It is found that Si L2,3 X-ray emission spectra of ion-beam-mixed Si monolayers in heat-treated SiO2 films lead to noticeable changes in the spectroscopic fine structure. Received: 20 November 1999 / Accepted: 17 April 2000 / Published online: 5 October 2000  相似文献   

19.
Si-rich oxide/SiO2 multilayer films with different SiO2 layer thicknesses have been deposited by the plasma enhanced chemical vapor deposition technique, and crystallized Si quantum dot (Si-QD)/SiO2 multilayer films are obtained after annealing at 1100 °C. The photoluminescence (PL) intensity of the multilayer films increases significantly with increasing SiO2 layer thickness, and the PL peak shifts from 1.25 eV to 1.34 eV. The PL excitation spectra indicate that the maximal PL excitation intensity is located at 4.1 eV, and an excitation–transfer mechanism exists in the excitation processes. The PL decay time for a certain wavelength is a constant when the SiO2 thickness is larger than 2 nm, and a slow PL decay process is obtained when the SiO2 layer is 1 nm. In addition, the PL peak shifts toward high energy with decreasing temperature only when the SiO2 layer is thick enough. Detailed analyses show that the mechanism of PL changes from the quantum confinement effect to interface defects with decreasing SiO2 layer thickness.  相似文献   

20.
The structure of nanocrystal-matrix interface and strain in embedded nanocrystals are studied using large-scale atomistic simulations, with the examples of Si nanocrystal embedded in amorphous matrix of SiO2. Photoluminescence from silicon nanocrystals embedded in a dielectric matrix like SiO2 and Si3N4 are promising for Si-based optical devices. The nanocrystal-matrix interface plays a crucial role in understanding its optical and electrical properties. Nanocrystals with diameters varying from 2.17 to 4.56 nm are studied. A detailed quantitative analysis of the variation of Si/SiO2 interface structure and strain distribution with nanocrystal diameter is reported. A linear variation of the interface width with nanocrystal diameter is observed with thinner interfaces for larger nanocrystals. Local deformation analysis reveals that the smaller nanocrystals are highly strained, whereas the strain in the larger ones shifts to the interface. This is in accordance with observed increase in total percentage of defect states in the interface from 39 to 70% for diameter increasing from 2.17 to 4.56 nm. Moreover, based on the atomic arrangements at the interface, optically active defects like Pb centres, E centres and non-bridging oxygen centres are identified and a dominance of Pb centres is observed for all the nanocrystals. The detailed structural characterization-related investigations using the proposed simulation approach will find useful application in designing system-level response of embedded nanocrystals and also to correlate various experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号