首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1 – x)Pb(Hf1–yTiy)O3x Pb(Mg1/3Nb2/3)O3 (x = 0.1 ~ 0.25, y = 0.555) ternary piezoelectric ceramics were prepared using the two‐step precursor method. Morphotropic phase boundary (MPB) compositions, located at x = 0.18 ~ 0.22, were confirmed using X‐ray diffraction and by their dielectric, piezoelectric and ferroelectric properties. The optimum dielectric and piezoelectric properties were achieved for the MPB composition 0.8Pb(Hf0.445Ti0.555)O3–0.2Pb(Mg1/3Nb2/3)O3, with dielectric permittivity εr, piezoelectric coefficient d33, planar electromechanical coupling kp and Curie temperature TC being on the order of 2800, 680 pC/N, 70% and 276 °C, respectively. Of particular significance is that the new ternary ceramics exhibit comparable piezoelectric and electromechanical properties to commercial PZT5H ceramics, but with much improved TC, showing a potential for applications at elevated temperature. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The phase structure, microstructure, piezoelectric properties, dielectric characteristic and the ME effect of magnetoelectric Pb[Zr0.23Ti0.36+0.02(Mg1/2W1/2)+0.39(Ni1/3Nb2/3)]O3 (PZT)+xNi0.8Co0.1Cu0.1Fe2O4 (NCCF) composite ceramics were prepared by the conventional solid state reaction method. The structural analysis of both the constituent phases and their composites was carried out by X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The results showed cubic spinel structure for ferrite phase and tetragonal perovskite structure for ferroelectric phase. The piezoelectric constant, dielectric constant, Curie temperature, remanent polarization and coercive electric field decreased with increase of ferrite content. The coercive field strength, saturation magnetization and remanent magnetization increased with increasing ferrite content.  相似文献   

3.
利用固相反应法在不同烧结温度条件下制备了一系列(Na1/2Bi1/2)Cu3Ti4O12(NBCTO)陶瓷样品,研究了它们的晶体结构、微观组织结构、介电性质和复阻抗及其随温度的变化. 实验发现NBCTO陶瓷所呈现出的电学性质与CaCu3Ti4O12陶瓷相应的电学性质非常类似. 烧结温度为990℃至1060℃范围的NBCTO陶瓷样品室 关键词: 高介电材料 介电性质 复阻抗 内阻挡层电容  相似文献   

4.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

5.
The binary system of 0.8Pb(Zr1/2Ti1/2)O3–0.2Pb(Ni1/3Nb2/3)O3 ceramics were synthesized by conventional mixed oxide and columbite method. X-ray diffraction analysis demonstrated the coexistence of both the rhombohedral and tetragonal phases for the columbite prepared sample. Rhombohedral to tetragonal phase transition for columbite method was different compared with those of the mixed oxide method. The permittivity shows a shoulder at the rhombohedral to tetragonal phase transition temperature TRho–Tetra = 195 °C, and then a maximum permittivity (36,000 at 10 kHz) at the transition temperature Tm = 277 °C on ceramics prepared with the columbite method. However, piezoelectric coefficient (d33) was measured to be 282 pC/N for the conventional method and higher than the columbite method. The results were related to the phase compositions and porosity of the ceramics.  相似文献   

6.
Piezoelectric ceramics with compositions of (0.90−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3-0.10PbZrO3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO1) mode and rhombohedral phase Rh mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.  相似文献   

7.
采用氧化物固相反应法制备了锰掺杂改性的Ba(Zr0.06Ti0.94)O3陶瓷.研究了锰的掺杂量对Ba(Zr0.06Ti0.94)MnxO3 (BZTM)陶瓷的结构、介电和压电性能的影响.实验发现,当锰含量x<0.5 mol%时进入晶格,使材料压电性能提高,损耗减小,表现出受主掺杂的特性;当锰含量x>0.5 mo 关键词: Ba(Zr 3 陶瓷')" href="#">Ti)O3 陶瓷 锰掺杂 介电性能 压电性能  相似文献   

8.
Ferroelectric ceramics with formula Pb0.8Ba0.2[(In1/2Nb1/2)1-xTix]O3 (PBINT) (x=0.0,0.1,0.2,0.3,0.4 and 0.5) were prepared via a two-step solid state reaction method. It was found that ceramics with compositions in the range of x=0.0∼0.3 showed a pseudo-cubic structure, whereas the ceramic with x=0.5 displayed a tetragonal structure. All compositions showed significant frequency dispersion in their dielectric properties. The remanent polarization Pr as well as the coercive field Ec, measured at room temperature, increases with the Ti content. The experimental results obtained in this system are summarized into a phase diagram, with the morphotropic phase boundary (MPB) located at x=0.4. Compared with the Pb[(In1/2Nb1/2)1-xTix]O3 solid solution system, incorporating Ba in the A-site leads to a significant decrease in the dielectric maximum temperature Tmax, a suppression of the dielectric relaxation parameter γ, and a shift of the MPB composition to a higher Ti content. PACS 77.84.Dy; 77.80.Bh; 77.22.Ch  相似文献   

9.
High piezoelectric and electromechanical properties were reported in the PbHfO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 ternary system with morphotropic phase boundary (MPB) compositions. This work focuses on the effect of MnO2 addition on 0.8Pb(Hf0.443Ti0.557)O3–0.2PMN (0.8PHT–0.2PMN) ceramics. It was observed that the Mn acceptor modification induced a “hardening” effect in 0.8PHT–0.2PMN, with decreased piezoelectric coefficients d33 and dielectric loss tan δ and a significantly increased mechanical quality factor Qm. Moreover, the 0.2 wt% MnO2‐doped 0.8PHT–0.2PMN ceramics exhibited good piezoelectric and electromechanical properties with d33, planar electromechanical coupling kp and Qm being on the order of 360 pC/N, 61% and 700, respectively, showing advantages compared to those of commercial hard PZT4 ceramics, which is attractive for high power applications. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
《Current Applied Physics》2020,20(12):1373-1378
The microstructure, dielectric and piezoelectric properties of Zr doped BaTiO3 ceramics sintered at optimum temperature, are investigated. High energy ball milling technique is adopted to realize nano-sized powders of Ba(Zr0.15Ti0.85)O3 ceramics. Increased boundary mobility of fine powders aided to obtain a relative density of >98.8% of theoretical density corresponding to ceramics under study. Internal stresses in these ceramics are found to be relieved by grain-boundary sliding. The Ba(Zr0.15Ti0.85)O3 ceramics synthesized at relatively low sintering temperatures exhibit remarkable, enhanced dielectric properties viz. improved polarization, high unipolar strain values comparable to Zr doped BaTiO3 single crystals of same composition, at relatively lower electric fields and also exhibit better fatigue tolerant properties. The underlying mechanisms responsible for superior dielectric, ferroelectric and piezoelectric properties are discussed.  相似文献   

11.
The structural and electrical properties of (1-x)PbZr0.52Ti0.48O3–xBaFe0.5Nb0.5O3 ceramics system with the composition near the morphotropic phase boundary were investigated as a function of the BaFe0.5Nb0.5O3 content by X-ray diffraction (XRD) and dielectric measurement technique. Studies were performed on the samples prepared by solid state reaction for x=0.1, 0.2, 0.3, 0.4 and 0.5. The XRD analysis demonstrated that with increasing BFN content in (1-x)PZT–xBFN, the structural change occurred from the tetragonal to the cubic phase at room temperature. Changes in the dielectric behavior were then related to these structural depending on the BFN content. PACS 77.84.Dy; 77.22.Ch; 77.22.Gm  相似文献   

12.
《Current Applied Physics》2014,14(4):582-585
We have performed a synchrotron X-ray microdiffraction to investigate the variation of the local strain-field across the interface in Pb(Zr0.52Ti0.48)O3/Ni0.8Zn0.2Fe2O4/Pb(Zr0.52Ti0.48)O3 (PZT–NZFO–PZT) tri-layered structure. In this study, we show that the in-plane lattice parameters of the NZFO lattice depend strongly on the piezoelectric strain of the PZT layer. This result explains that an electric-field-induced piezoelectric strain from the PZT layer is effectively transferred to the NZFO layer. Furthermore, the local strain persists within 20 μm away from the interface, inducing changes of magnetic responses via the inverse magnetostrictive effect.  相似文献   

13.
The dielectric and piezoelectric properties of pyrochlore-free lead zirconate titanate-lead zinc niobate ceramics were investigated systematically as a function of Sr doping. The powders of Pb(1? x )Sr x [0.7(Zr1 / 2Ti1 / 2)–0.3(Zn1 / 3Nb2 / 3)]O3, where x?=?0–0.06 were prepared using the columbite-(wolframite) precursor method. The ceramic materials were characterized using X-ray diffraction, dielectric spectra, hysteresis and electromechanical measurements. The phase-pure perovskite phase of Sr-doped PZN--PZT ceramics was obtained over a wide compositional range. The results showed that the optimized electrical properties were also achieved at composition x?=?0.0, which were K P?=?0.69, d 33?=?670?pC?N?1, P r?=?31.9?µC?cm?2 and εrmax?=?18600. Maximum dielectric constant values of the systems decreased rapidly with increasing Sr concentration. Moreover, with increasing Sr concentration dielectric constant versus temperature curves become gradually broader. The diffuseness parameter increased significantly with Sr doping. Furthermore, Sr doping has been shown to produce a linear reduction in the transition temperature (T m)?=?294.1–12.7x°C with concentration (x). Sr shifts the transition temperature of this system at a rate of 12.7°C?mol?1%.  相似文献   

14.
(Bi1/2Na1/2)TiO3 ceramics (BNT) with 0–6 mol% of excess Bi2O3 are prepared by conventional solid-state sintering. The electrical properties of the samples are examined. The addition of excess Bi2O3 reduces the leakage current of BNT ceramics significantly, thus facilitating the poling process, and improves their piezoelectric properties slightly for certain amounts of added Bi2O3. BNT ceramics have very high dielectric constants and dissipation factors at low frequency and high temperature due to their high conductivity. Adding excess Bi2O3 to BNT ceramics affects their dielectric behavior and phase transition temperatures. Grain growth is suppressed by adding Bi2O3 and no second phase is observed for BNT ceramics with up to 6 mol% of excess Bi2O3 added.  相似文献   

15.
The piezoelectric properties of Pb[(Fe1/3Sb2/3) x Ti y Zr z ]O3 with x + y + z = 1, x = 0.1, y = 0.43–0.48 ceramics have been investigated over a broad temperature range using a resonance technique. The influence of modification of PZT normal ferroelectric synthesized near the morphotropic phase boundary by a relaxor Pb(Fe1/3Sb2/3)O3 compound on its physical properties was studied. The coefficients s 11, k 31, and d 31 were calculated from the parameters characterizing the behavior of damped harmonic oscillator in the vicinity of the piezoelectric resonance. Several anomalies of the piezoelectric coefficients have been found in the temperature range 300–600 K. Two diffuse phase transitions were observed in Pb[(Fe1/3Sb2/3) x Ti y Zr z ]O3. The anomaly near 530 K for y = 0.43 is responsible for the transition from the rhombohedral phase to the tetragonal one. For y > 0.44 this transition is found to be very diffuse and the coexistence of rhombohedral and tetragonal phases occurs. The observation of low piezoelectric activity confirms the existence of polar regions in Pb[(Fe1/3Sb2/3) x Ti y Zr z ]O3 above T m.  相似文献   

16.
《Current Applied Physics》2015,15(11):1521-1528
Lead-free piezoelectric ceramics of the composition (1-x)(Bi0.5K0.50)TiO3-xBi(Ni0.50Ti0.50)O3 or (1-x)BKT-xBNiT (when x = 0–0.20 mol fraction) were prepared by a conventional mixed-oxide method and sintered at 1050 °C for 4 h. The effects of BNiT content on the phase equilibria, and the dielectric, ferroelectric and piezoelectric properties were systematically investigated. High density sintered specimens (5.71–6.12 g/cm3) were obtained for all compositions. X-ray diffraction patterns showed that all BKT-BNiT samples exhibited a single perovskite phase which confirms that BNiT and BKT formed a solid solution up to x = 0.20. A morphotropic phase boundary (MPB) separating a BKT-rich tetragonal phase and a BNiT pseudo-cubic phase was identified over the compositional range 0.05 < x < 0.10, where enhanced electrical properties were observed. The optimum dielectric properties (εr = 1710, tanδ = 0.036), ferroelectric properties (Pr = 16.6 μC/cm2, Ec = 22.5 kV/cm and Rsq = 0.86) and piezoelectric properties (d33 = 288 pC/N, Smax = 0.22% and d*33 = 313 pm/V) were observed with a relatively high Tm ∼ 304 °C within this MPB region. Overall, these results indicate that the BKT-BNiT ceramic system is a promising lead-free piezoelectric candidate for further development for actuator applications.  相似文献   

17.
Among Aurivillius layer-structured materials, CaBi2Nb2O9 is a best potential candidate for ultrahigh-temperature applications because of its highest Curie temperature of about 940 °C. In this paper, (1-x)CaBi2Nb2O9-xBaZr0.2Ti0.8O3 composite ceramics were prepared by conventional solid-state sintering method. The dielectric results show that the introduction of BaZr0.2Ti0.8O3 not only increases the permittivity of the material, but also reduces its dielectric loss. The optimum electrical properties were obtained in the x = 0.01 sample with piezoelectric coefficient (d33) of 15.1 pC/N and high ferroelectric remnant polarization (Pr) of 9.9 μC/cm2. Furthermore, the composite samples show good thermal depoling performance, the d33 of the x = 0.01 sample is 13.8 pC/N, which is about 91% of the initial value after depoling at 800 °C. Therefore, (1-x)CaBi2Nb2O9-xBaZr0.2Ti0.8O3 is one of the candidates for high temperature piezoelectric materials.  相似文献   

18.
The phase transition and electrical properties of Ba(Ti0.9Sn0.1)O3 ceramics with B2O3 added were investigated to explore the effect of B2O3 addition on enhanced densification and dielectric constant of these ceramics. With increasing B2O3 content, a linear reduction of ferroelectric to paraelectric transition temperature was observed. In addition, higher B2O3 concentrations enhanced a ferroelectric relaxor behavior in the ceramics. Changes in this behavior were related to densification, second-phase formation and compositional variation of the ceramics.  相似文献   

19.
田晓霞  屈绍波  杜红亮  李晔  徐卓 《中国物理 B》2012,21(3):37701-037701
The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb2O9, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tanδ decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where □ represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Ca0.88(LiCe)0.040.04Bi2Nb2O9 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (TC) found to be 13.3 pC/N and 960 ℃, respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.  相似文献   

20.
Dense Ba(Zn1/3Nb2/3)O3/(Ni0.37Cu0.20Zn0.43O)-(Fe2O3)0.96 (BZN/NiCuZn) composites were prepared by the conventional solid-state reaction method and sintered at 950 °C. The phase composition and surface morphology of the composites were investigated using XRD and SEM, respectively. The dielectric and magnetic properties of the composites are also reported. In low frequency range the dielectric properties of the BZN/NiCuZn composites show Maxwell-Wagner relaxation. In high frequency range the BZN/NiCuZn composites possess high dielectric constants and permeabilities, which can be used in high-frequency communications for capacitor-inductor integrating devices such as electromagnetic interference filters and antennas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号