首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Dimerization kinetics was studied for fullerene C60 by IR spectroscopy at a pressure of 1.5 GPa in the temperature range 373–473 K. The kinetic curves for the formation of a dimer (C60)2 were obtained using its analytical IR band at 796 cm?1. Under the assumption that pressure-induced C60 dimerization is a second-order irreversible reaction, the reaction rate constants were determined at different temperatures. The corresponding activation energy and preexponential factor were found to be 134±6 kJ/mol and (1.74± 0.24)×1014 s?1, respectively. The specific features of the solid-phase C60 dimerization in simple cubic and face-centered cubic fullerite phases are discussed.  相似文献   

2.
The optical limiting behavior of C60Ph5Cl, C60Cl6, and C70Cl10 in toluene solution has been measured at 532 nm with nanosecond pulses. The limiting threshold for C60Ph5Cl, C60Cl6, and C70Cl10 were 4, 8, and 8 J/cm2, respectively. The limiting action was strongly influenced by the number of conjugated double bonds and the nature of the ligand. Both lower limiting thresholds and throughputs make these new fullerene derivative compounds good promising candidates for optical limiting materials in the toluene solution.  相似文献   

3.
Conjugated polyamides containing porphyrin and [60]fullerene (C60) in the main chain were prepared by a direct polycondensation of the 3′H,3″H-dicyclopropa[1, 9:16, 17] [5, 6]fullerene-C60-I h -3′,3″-dicarboxylic acid and 5,15-bis(4-aminophenyl)-10,20-bis(3,5-dialkoxyphenyl)porphyrin in the presence of triphenyl phosphite and pyridine. Gel permeation chromatography (GPC) analysis of the polyamides showed the weight-average molecular weight was about 23,626–23,736, and the temperature at 5% weight loss determined by thermogravimetric analysis (TGA) was above 216 °C. The transmission electron microscopy (TEM) images displayed the regular one-dimensional linear arrays of the polyamides with lengths exceeded 200 nm. The photoinduced electron transfer from porphyrin to C60 in the polyamides was observed in nanosecond laser-flash photolysis experiments at ambient temperature, which produced a charge-separated state (porphyrin radical cation–C60 radical anion pair) with a lifetime as long as 40 μs. The calculated ratio of k CS/k CR was found to be 2.1 × 104. They could have potential applications for photoelectronic devices, organic solar cells and so on.  相似文献   

4.
The reaction of C70 by ultrasonication with various oxidants such as 3-chloroperoxy benzoic acid (Fluka 99%), 4-methyl morpholine N-oxide (Aldrich 97%), chromium (VI) oxide (Aldrich 99.9%), and oxone® monopersulfate compound, at room temperature causes the oxidation of fullerene [C70(O)n] (n=1–2 or n=1). The FAB-MS, UV–visible, FT-IR spectra, and HPLC analysis confirmed that products of fullerene oxidation are [C70(O)n] (n=1–2 or n=1).  相似文献   

5.
The results of ab initio Hartree-Fock calculations of endo-and exohedral C60 fullerene complexes with the Li+ ion and Li2 dimer are presented. The coordination of the Li+ ion and the Li2 dimer in the endohedral complexes and the coordination of Li+ ion in the exohedral complex of C60 fullerene are determined by the geometry optimization using the 3–21G basis set. In the endohedral Li+C60 complex, the Li+ ion is displaced from the center of the C60 cage to the centers of carbon hexa-and pentagons by 0.12 nm. In the Li2 dimer encapsulated inside the C60 cage, the distance between the lithium atoms is 0.02 nm longer than that in the free molecule. The calculated total and partial one-electron densities of states of C60 fullerene are in good agreement with the experimental photoelectron and X-ray emission spectra. Analysis of one-electron density of states of the endohedral Li+@C60 complex indicates an ionic bonding between the Li atoms and the C60 fullerene. In the Li+C60 and Li+@C60 complexes, there is a strong electrostatic interaction between the Li+ ion and the fullerene.  相似文献   

6.
The aim of this study was to produce anti-fullerene C60 antibodies for the development of detection systems for fullerene C60 derivatives. To produce anti-fullerene C60 antibodies, conjugates of the fullerene C60 carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C60) and 0.4 ng/mL (accordingly to total fullerene–protein concentration).  相似文献   

7.
Photoinduced polarons in solid films of polymer:fullerene blends were studied by photoluminescence (PL), photoinduced absorption (PIA) and electron spin resonance (ESR). The donor materials used were P3HT and MEH‐PPV. As acceptors we employed PC60BM as reference and various soluble C70‐derivates: PC70BM, two different diphenylmethano‐[70]fullerene oligoether (C70‐DPM‐OE) and two dimers, C70–C70 and C60–C70. Blend films containing C70 revealed characteristic spectroscopic signatures not seen with C60. Light‐induced ESR showed signals at g ≥ 2.005, assigned to an electron localized on the C70 cage. The formation of C70 radical anions also leads to a subgap PIA band at 0.92 eV, hidden in the spectra of C70‐based P3HT and MEH‐PPV blends, which allows for more exact studies of charge separated states in conjugated polymer:C70 blends. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
For the first time, bis(anisole)chromium fulleride (PhOMe)2Cr[C60]−· and a crystalline complex of fullerene with ortho-butoxyanisole have been obtained. The temperature dependence of the parameters of the EPR spectrum of bis(anisole)chromium fulleride (PhOMe)2Cr[C60]−· has been studied. The molecular structure of the complex of fullerene with ortho-butoxyanisole has been established.  相似文献   

9.
The reactions of fullerene[C60] with 2′-azidoethyl 2,3,4,6-tetra-O-acetyl-α-d-mannopyranoside (2a) and 2′-azidoethyl 2,3,4,6-tetra-O-acetyl-β-d-galactopyranoside (2b) under ultrasonic irradiation cause the cycloaddition of 2′-azidoethyl glycosides to fullerene[C60] and lead to d-glycosyl fullerene[C60] derivatives 3a and 3b, respectively. The glycosyl fullerene[C60] derivatives were characterized by 1H and 13C NMR, UV–vis, FAB-MS, FT-IR spectra and were a 1:1 glycoside fullerene [C60]-adduct.  相似文献   

10.
The kinetics of fullerene solid-phase dimerization proceeding through the 2+2 cycloaddition of C60 at a pressure of 1.5 GPa is investigated by vibrational spectroscopy in the temperature range 373–473 K. Kinetic curves for the formation of (C60)2 dimers are obtained using the analytical band at 796 cm?1 in the IR spectra of the (C60)2 dimer molecule. Under the assumption that the pressure-induced dimerization of C60 is an irreversible second-order reaction, the reaction rate constants are determined at different temperatures. The activation energy and the preexponential factor are found to be equal to 134±6 kJ/mol and (1.74±0.24)×1014 s?1, respectively.  相似文献   

11.
Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE has been applied for deposition of fullerenes for the first time and we have studied the growth of thin films of solid C60. The fragmentation of C60 fullerene molecules induced by ns ablation in vacuum of a frozen anisole target with C60 was investigated by matrix-assisted laser desorption/ionization (MALDI). Our findings show that intact fullerene films can be produced with laser fluences ranging from 0.15 J/cm2 up to 1.5 J/cm2.  相似文献   

12.
The interfacial electronic structures of molybdenum oxide (MoOx) deposited on fullerene (C60) which could be used as a hole-injecting layer in inverted top-emitting organic light-emitting diodes (TE-OLEDs) were investigated by photoemission spectroscopy. The hole-injecting barrier height (ΦBh) at each interface investigated by an ultraviolet photoemission spectroscopy was reduced to from 1.4 to 0.1 eV as the thickness of MoOx (ΘMoOx) was increased from 0.1 to 5.0 nm on C60. In these interface system, the sign of vacuum-level shift, highest occupied molecular orbital (HOMO)-level shift, and core-level shifts were all positive indicating that the interface mechanism is attributed to the work-function differences due to a band bending at these interfaces. Moreover, the near-edge X-ray absorption fine structure spectra at carbon K-edge did not show any structural modification as well as any chemical reaction at the MoOx-on-C60 interfaces when ΘMoOx was changed on C60. From these results, the inverted TE-OLED with C60 (5.0 nm)/MoOx (5.0 nm) showed the power efficiency of 1.7 lm/W at a luminance of about 1000 cd/m2 and the maximum luminance of about 76.000 cd/m2 at the bias voltage of 11.0 V. It exhibited the highest performance among the inverted TE-OLEDs fabricated as a function of MoOx thickness from 0 to 5.0 nm.  相似文献   

13.
The possible existence of complexes formed by the C60 fullerene or its derivatives with transition metals interacting with the carbon cage via η6−π type bonding is discussed. The derivatives C60 R 6 of the C60 fullerene (R = −, H, F, Cl, Br, CN) are analyzed using the density functional method within the Perdew-Burke-Ernzerhof approximation. In these molecules, the R groups are attached to carbon atoms located in the α positions with respect to the common hexagon of the C60 fullerene. The structure and electron configuration of complexes formed by these molecules with Cr(C6H6), Cr(CO)3, MoC6H6, and Mo(CO)3 particles are modeled. The “dimer” systems C60R6-M-R 6C60 (M = Cr, Mo, R =-, H, F) are investigated in which two fullerene molecules interact via a transition-metal atom. It is found that the introduction of six R groups in the α sites with respect to the common hexagon of C60 favors the formation of complexes of these derivatives of the C60 fullerene with the Cr(C6H6), Cr(CO), Mo(C6H6), and Mo(CO)3 particles in which η6-π type bonds arise between the metal and the atoms of the hexagon fringed with the R groups. It is also demonstrated that analogous complexes with a “bare” C60 fullerene are possible, but they are significantly less stable. The (C6H6) M-R 6C60 R 6-M (C6H6) complexes of particles M(C6H6) (M= Cr, Mo) and derivatives R 6C60 R 6 (R =-, H, F, Cl, Br) are studied. In the R 6C60 R 6 molecule, six R groups are located in the α sites with respect to the common hexagon of the C60 fullerene and six other groups fringe the opposite hexagon. The obtained results can be applied to planning synthesis of new complexes that C60 fullerene derivatives can form with transition metals. Original Russian Text ¢ E.G. Gal’pern, A.R. Sabirov, I.V. Stankevich, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 12, pp. 2220–2223.  相似文献   

14.
Haijun Shen 《Molecular physics》2013,111(17-18):2405-2409
The compressive mechanical properties of Cn (n = 20, 60, 80, 180) and endohedral M@C60 (M = Na, Al, Fe) fullerene molecules are investigated using a quantum molecular dynamics (QMD) technique. Energy–strain curves, force–strain curves, endurance load, failure strain corresponding to the endurance load, and compressive stiffness of the fullerene molecules are obtained. The compressive mechanical properties of C20, C60, C80, C180 and M@C60 (M = Na, Al, Fe) are discussed. The results show that the larger the magic number n of an empty fullerene, the higher its endurance load and compressive stiffness, but the lower its failure strain, and comparing to the empty C60 fullerene, all the M@C60 molecules have greater endurance capability and failure strain.  相似文献   

15.
Soluble dimer compounds of the general formula [C60(Me 3Si)n]2 (where n = 3, 5, 7, or 9 and M e = CH3) and a soluble monomer compound, C60(Me 3Si)12, are synthesized by the reaction of the compound C60Nan(THF)x (where n = 4, 6, 8, 10, or 12 and THF = tetrahydrofuran) with trimethylchlorosilane Me 3SiCl. The compounds synthesized are identified using IR and NMR spectroscopy and mass spectrometry. An irreversible endothermic effect exhibited by the [C60(Me 3Si)7]2 compound in the temperature range 448–570 K is revealed by dynamic adiabatic calorimetry. From analyzing the experimental results, it becomes possible for the first time to demonstrate the structural flexibility of the fullerene in the following sequence of reactions: $\begin{array}{*{20}c} {C_{60} \xrightarrow[{ - 12C_{10} H_8 }]{{ + 12NaC_{10} H_8 }}C_{60} Na_{12} \xrightarrow[{ - 12NaCl}]{{ + excess Me_3 SiCl}}C_{60} (Me_3 Si)_{12} \xrightarrow[{ - 12Me_3 SiCl}]{{ + HCl(gas)}}[C_{60} H_n ]\xrightarrow[{ - 1/2nH_2 }]{{hv}}C_{60} } \\ {C_{60} \xrightarrow[{ - 8C_{10} H_8 }]{{ + 8NaC_{10} H_8 }}C_{60} Na_8 \xrightarrow[{ - 8NaCl}]{{ + excess Me_3 SiCl}}[C_{60} (Me_3 Si)_7 ]_2 \xrightarrow{{573K}}\begin{array}{*{20}c} {products of the} \\ {transformation of + } \\ {Me_3 Si groups} \\ \end{array} C_{60^ - } } \\ \end{array} $   相似文献   

16.
Defect formation and annealing processes in fullerene C60 at T = (4000–6000) K are studied using molecular dynamics with a tight-binding potential. The cluster lifetime until fragmentation, which proceeds, as a rule, through the loss of a C2 dimer, has been found as a function of temperature. The activation energy and the frequency factor in the Arrhenius equation for the fragmentation rate have been found to be E a = (9.2 ± 0.4) eV and A = (8 ± 1) × 1019s?1. It is shown that fragmentation can occur already after the C60 cluster loses its spherical shape. This fact must be taken into account in theoretical calculations of E a.  相似文献   

17.
Highly-charged fullerene ions C 60 z+ and C 70 z+ with charge states up to z=7 have been produced in an electron impact ion source of a two sector field mass spectrometer by using ion source operating conditions similar to those used in EBIT sources. The stability of these ions was investigated quantitatively in the two field free regions of the mass spectrometer. It was found that besides C2 evaporation the dominant fission process for ions with charges larger than +2 is the loss of a charged C 2 + unit via a super-asymmetric charge separation reaction C 60 z+ C 58 (z–1)+ +C 2 + and C 70 z+ C 68 (z–1)+ +C 2 + , respectively. The most important finding from these studies is that this super-asymmetric dissociation reaction proceeds via a three stage reaction sequence involving an electron transfer reaction at the second stage between a receding C2 unit and the remaining highly-charged fullerene cage.Based on a lecture given by S. Matt at the 1st Euroconference on Atomic Physics with Stored Highly Charged Ions, Heidelberg, 1995.  相似文献   

18.
We have measured electron capture cross sections in collisions between higher order fullerene anions Cn - (n=76, 78, 82, 84, 86, 90 and 96) and Na atoms. The ions were produced in an electrospray ion source (ESI) and accelerated to an energy of 50 keV. The measured cross section for dianion formation is three times larger for C96 than that for C60. The latter cross section was earlier found to be 36 ?2. The dramatic increase of the cross section with fullerene size is explained by means of the curve crossing model for electron transfer.  相似文献   

19.
Fullerenes have attracted considerable attention in various areas of science and technology. Owing to their exceptional physical, chemical, and biological properties, they have many applications, particularly in cosmetic and medical products. Using the Lennard-Jones 6-12 potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic surface densities, we determine the binding energies of a C60 fullerene with respect to both single-strand and double-strand DNA molecules. We assume that all configurations are in a vacuum and that the C60 fullerene is initially at rest. Double integrals are performed to determine the interaction energy of the system. We find that the C60 fullerene binds to the double-strand DNA molecule, at either the major or minor grooves, with binding energies of ?4.7 eV or ?2.3 eV, respectively, and that the C60 molecule binds to the single-strand DNA molecule with a binding energy of ?1.6 eV. Our results suggest that the C60 molecule is most likely to be linked to the major groove of the dsDNA molecule.  相似文献   

20.
A modified method is proposed for preparing fullerene compounds with alkali metals in a solution. The compounds synthesized have the general formula Me n C60(THF)x, where Me = Li or Na; n=1–4, 6, 8, or 12; and THF = tetrahydrofuran. The use of preliminarily synthesized additives MeC10H8 makes it possible to prepare fullerene compounds with an exact stoichiometric ratio between C 60 n? and Me +. The IR and EPR spectra of the compounds prepared are analyzed and compared with the spectra of their analogs available in the literature. The intramolecular modes T u (1)-T u (4) for the C 60 n? anion are assigned. The splitting of the T u (1) mode into a doublet at room temperature for Me n C60(THF)x (n=1, 2, 4) compounds indicates that the fullerene anion has a distorted structure. An increase in the intensity of the T u (2) mode, a noticeable shift of the T u (4) mode toward the long-wavelength range, and an anomalous increase in the intensity of the latter mode for the Li3C60(THF)x complex suggest that, in the fullerene anion, the coupling of vibrational modes occurs through the charge-phonon mechanism. The measured EPR spectra of lithium-and sodium-containing fullerene compounds are characteristic of C 60 ? anions. The g factors for these compounds are almost identical and do not depend on temperature. The g factor for the C 60 n? anion depends on the nature of the metal and differs from the g factor for the C 60 ? anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号