首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrasound effect applied on potassium dihydrogen phosphate was investigated in a continuous crystallization system. The studied process variables were ultrasonic power (W) and residence time. The crystal size distributions of the final products obtained with and without ultrasonic power were determined and the data were evaluated by using modified form of Abegg, Stevens and Larson (ASL) model. The supersaturation limit decreased with ultrasonic waves and the crystal morphology was modified. The average crystal size decreased in the presence of ultrasonic power. An abrasive effect was observed at a high ultrasonic power input.  相似文献   

2.
With the increasing demand for biopharmaceuticals, a method to crystallize biomolecule products with high quality, high yield and uniform size distribution as well as regular crystal habit is needed. In this work, ultrasound was used as a nucleation accelerator to decrease the energy barrier for lysozyme crystal formation. Crystallization experiments on egg-white lysozyme were carried out with and without ultrasound. The effect of ultrasound on induction time, metastable zone width, crystal size and morphology and process yield was investigated in detail. The nucleation-promoting effect produced by ultrasound is illustrated by the reduction of metastable zone width and induction time. By inducing faster nucleation, ultrasound leads to protein crystals grow at lower supersaturation levels with shorter induction time. It was found that ultrasound could result in uniform size distribution of the product due to the preventing of aggregation. However, long time continuous application of ultrasound could result in smaller particle size. Hence, ultrasonic-stop method was found to be a more appropriate strategy to enhance the crystallization process of proteins such as lysozyme.  相似文献   

3.
The application of power ultrasound to reaction crystallization   总被引:5,自引:0,他引:5  
Li H  Li H  Guo Z  Liu Y 《Ultrasonics sonochemistry》2006,13(4):359-363
The action of power ultrasound in controlling the supersaturation, nucleation and crystal growth during the acid-base reaction crystallization of 7-amino-3-desacetoxy cephalosporanic acid (7-ACDA) has been investigated. The experimental results show that ultrasound can mix the reaction more efficiently and uniformly than conventional agitation methods. Insonation leads to the reduction of both the induction period and metastable zone width of the crystallization, so that the process of crystallization can be more efficiently controlled than without insonation. Agglomeration is also greatly reduced. Adjusting the ultrasonic parameters can modulate the crystal size and size distribution. The mechanism of the sonoprocess has been analyzed and comments are made on the potential applicability of sonication in large-scale crystallization practice.  相似文献   

4.
The ultrasound-assisted crystallization process has promising potentials for improving process efficiency and modifying crystalline product properties. In this work, the crystallization process of fotagliptin benzoate methanol solvate (FBMS) was investigated to improve powder properties and downstream desolvation/drying performance. The direct cooling/antisolvent crystallization process was conducted and then optimized with the assistance of ultrasonic irradiation and seeding strategy. Direct cooling/antisolvent crystallization and seeding crystallization processes resulted in needle-like crystals which are undesirable for downstream processing. In contrast, the ultrasound-assisted crystallization process produced rod-like crystals and reduced the crystal size to facilitate the desolvation of FBMS. The metastable zone width (MSZW), induction time, crystal size, morphology, and process yield were studied comprehensively. The results showed that both the seeding and ultrasound-assisted crystallization process (without seeds) can improve the process yield and the ultrasound could effectively reduce the crystal size, narrow the MSZW, and shorten the induction time. Through comparing the drying dynamics of the FBMS, the small rod-shaped crystals with a mean size of 9.6 μm produced by ultrasonic irradiation can be completely desolvated within 20 h, while the desolvation time of long needle crystals with an average size of about 157 μm obtained by direct cooling/antisolvent crystallization and seeding crystallization processes is more than 80 h. Thus the crystal size and morphology were found to be the key factors affecting the desolvation kinetics and the smaller size produced by using ultrasound can benefit the intensification of the drying process. Overall, the ultrasound-assisted crystallization showed a full improvement including crystal properties and process efficiency during the preparation of fotagliptin benzoate desolvated crystals.  相似文献   

5.
Application of power ultrasound, offers potential in the degree of control over the preparation and properties of nanocrystalline zeolites, which have become increasingly important due to their diverse emerging applications. Synthesis of silicalite-1 nanocrystals from a clear solution was carried out at 348 K in the absence and presence of ultrasound of 300 and 600 W, in an attempt to investigate the effects of sonication, in this respect. Variation of the particle size and particle size distribution was followed with respect to time using a laser light scattering device with a detector set to collect back-scattered light at an angle of 173°. Product yield was determined and the crystallinity was analyzed by X-ray diffraction for selected samples collected during the syntheses. Nucleation, particle growth and crystallization rates all increased as a result of the application of ultrasound and highly crystalline silicalite-1 of smaller average particle diameter could be obtained at shorter synthesis times. The particle size distributions of the product populations, however, remained similar for similar average particle sizes. The rate of increase in yield was also speeded up in the presence of ultrasound, while the final product yield was not affected. Increasing the power of ultrasound, from 300 to 600 W, increased the particle growth rate and the crystalline domain size, and decreased both the final particle diameter and the time required for the particle growth to reach completion, while its effect on nucleation was unclear.  相似文献   

6.
The objective of this research was to modify the crystal shape and size of poorly water-soluble drug ropivacaine, and to reveal the effects of polymeric additive and ultrasound on crystal nucleation and growth. Ropivacaine often grow as needle-like crystals extended along the a-axis and the shape was hardly controllable by altering solvent types and operating conditions for the crystallization process. We found that ropivacaine crystallized as block-like crystals when polyvinylpyrrolidone (PVP) was used. The control over crystal morphology by the additive was related to crystallization temperature, solute concentration, additive concentration, and molecular weight. SEM and AFM analyses were performed providing insights into crystal growth pattern and cavities on the surface induced by the polymeric additive. In ultrasound-assisted crystallization, the impacts of ultrasonic time, ultrasonic power, and additive concentration were investigated. The particles precipitated at extended ultrasonic time exhibited plate-like crystals with shorter aspect ratio. Combined use of polymeric additive and ultrasound led to rice-shaped crystals, which the average particle size was further decreased. The induction time measurement and single crystal growth experiments were carried out. The results suggested that PVP worked as strong nucleation and growth inhibitor. Molecular dynamics simulation was performed to explore the action mechanism of the polymer. The interaction energies between PVP and crystal faces were calculated, and mobility of the additive with different chain length in crystal-solution system was evaluated by mean square displacement. Based on the study, a possible mechanism for the morphological evolution of ropivacaine crystals assisted by PVP and ultrasound was proposed.  相似文献   

7.
功率超声强化溶液冻结机理的研究进展   总被引:3,自引:0,他引:3  
功率超声波强化溶液结晶是一种新型的结晶技术,由于其具有促进溶液冻结、控制晶体粒径分布和提高冻结产品质量的作用,近年来受到越来越多的关注。从过冷溶液的一次冰晶成核、二次冰晶成核以及树枝状冰晶体的生长速度等方面对超声波强化溶液结晶的机理进行了综述,并对超声结晶机理研究的发展方向提出了建议。  相似文献   

8.
《Ultrasonics sonochemistry》2014,21(3):1182-1186
Antisolvent crystallization of glycine was performed under ultrasonic irradiation of 1.6 MHz. The irradiation enhanced both the growth of α-glycine crystal and the uniformity in the crystal size. The degree of both enhancement effects increased with increasing ultrasonic power. While under the irradiation of 20 kHz ultrasound, no growth enhancement was observed, but the crystal size reduced as was reported in the literature. To elucidate the mechanism of growth enhancement, another experiment was designed and conducted to avoid the effect of nucleation from the sonocrystallization. The result suggests that the ultrasound enhances the incorporation of microcrystals to larger crystals. Probably, the collision between solid particles is intensified by the disturbance characterized by the high frequency ultrasound. The crystal growth was modeled with an apparent reaction of microcrystal and larger crystal. The result of the growth experiment was successfully predicted with a rate equation for pseudo first order reaction with a single parameter of rate constant. The rate constant linearly increased with the ultrasonic power. The analysis enables quantitative evaluation of the ultrasonic effect on the crystal growth.  相似文献   

9.
Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process.  相似文献   

10.
Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization. Now, that industrial protein crystallization is gaining momentum, the interest on new ways to control protein nucleation and crystal growth is advancing. In this work we present the development of a novel ultrasound bioreactor to study its influence on protein crystallization in agarose gel. Gel media minimize convention currents and sedimentation, favoring a more homogeneous and stable conditions to study the effect of an externally generated low energy ultrasonic irradiation on protein crystallization avoiding other undesired effects such as temperature increase, introduction of surfaces which induce nucleation, destructive cavitation phenomena, etc. In-depth statistical analysis of the results has shown that the impact of ultrasound in gel media on crystal size populations are statistically significant and reproducible.  相似文献   

11.
The effect of ultrasound vibrations on the cooling crystallization of sodium arsenate in supersaturated solutions was investigated. In particular, the effects of ultrasound vibrations on induction time and crystal size distribution were studied using a laser-based apparatus with relative supersaturation ranging from 1.3 to 1.8. The results show that ultrasound vibrations have a significant effect on reducing induction time and crystal size distribution. The application of ultrasound vibrations to the system resulted in a small change in surface tension; however, the induction time and crystal size significantly decreased. The mean size of sodium arsenate crystals decreased from 398.87 ± 3.27 to 168.68 ± 2.07 μm, as the ultrasound power increases from 26 to 130 W. Ultrasound vibrations significantly reduced the induction time in a highly supersaturated solution compared to that in a low supersaturated solution.  相似文献   

12.
顾洪恩  李浩 《光学学报》1990,10(2):74-177
本文报道了室温下LiF晶体中F_3~+-F_2混合色心激光器.利用一块晶体和单一泵光,输出激光波长范围从510~580nm、640~710nm.总带宽140nm.  相似文献   

13.
超声场强化溶液结晶研究进展   总被引:7,自引:0,他引:7       下载免费PDF全文
溶液结晶技术在很多领域有着广泛的应用,超声强化溶液结晶不仅可刺激结晶成核,而且也可提高结晶生长速率,控制晶体粒径的分布,提高产品的质量和结晶设备的生产能力,具有重要的理论和实际意义,本文论述了这方面的研究进展情况,并提出了存在的问题和展望。  相似文献   

14.
功率超声在结晶过程中应用的进展   总被引:6,自引:0,他引:6       下载免费PDF全文
功率超声在结晶过程中的应用研究促进了结晶技术的发展,丰富了功率超声学和相关学科相互交叉的学术内容。以实例陈述了超声强化溶液结晶过程在化工、食品和制药行业中的应用,从熔融结晶和电结晶两方面阐述了超声改善金属结晶,综述了高分子材料和生物大分子等聚合物结晶过程中超声波的应用,总结了超声波对纳米晶型材料制备和性能的影响,着重说明了功率超声在食品冷冻中冰结晶过程的研究现状和发展方向。最后,总结了超声对结晶的强化机理。  相似文献   

15.
There is a limited work on the use of pulsed ultrasound for water disinfection particularly the case of natural water. Hence, pulsed ultrasound disinfection of natural water was thoroughly investigated in this study along with continuous ultrasound as a standard for comparison. Total coliform measurements were applied to evaluate treatment efficiency. Factorial design of 23 for the tested experimental factors such as power, treatment time and operational mode was applied. Two levels of power with 40% and 70% amplitudes, treatment time of 5 and 15 min and operational modes of continuous and pulsed with On to Off ratio (R) of 0.1:0.6 s were investigated. Results showed that increasing power and treatment time or both increases total coliform reduction, whereas switching from continuous to pulsed mode in combination with power and treatment time has negative effect on total coliform reduction. A regression model for predicting total coliform reduction under different operating conditions was developed and validated. Energy and cost analyses applying electrical and calorimetric powers were conducted to serve as selection guidelines for the choosing optimum parameters of ultrasound disinfection. The outcome of these analyses indicated that low power level, short treatment time, and high R ratios are the most effective operating parameters.  相似文献   

16.
The effect of ultrasound on the kinetics of anti-solvent crystallization of sucrose was studied. The influence of temperature, stirring rate, supersaturation and ultrasonic power on the anti-solvent crystallization of sucrose was investigated. The relationship between infrared spectral characteristic band of sucrose and supersaturation was determined with an online reaction analyzer. The crystal size distribution of sucrose was detected by a laser particle-size analyzer. Ultrasound accelerated the crystallization process, and had no impact on the crystal shape. Abegg, Stevens and Larson model was fitted to the experimental data, and the results were the following: At 298.15 K, the average size of crystals was 133.8 μm and nucleation rate was 4.87 × 109 m−3·s−1 without ultrasound. In an ultrasonic field, the average size was 80.5 μm, and nucleation rate was 1.18 × 1011 m−3·s−1. Ultrasound significantly reduced the average size of crystals and improved the nucleation rate. It was observed that the crystal size decreased with the increase of stirring rate in silent environment. When the stirring rate increased from 250 to 400 rpm, the average size decreased from 173.0 to 132.9 μm. However, the stirring rate had no significant impact on the crystal size in the ultrasonic field. In addition, the activation energy of anti-solvent crystallization of sucrose was decreased, and the kinetic constant of nucleation rate was increased due to the effect of ultrasound. In the ultrasonic field, the activation energy was reduced from 20422.5 to 790.5 J·mol−1, and the kinetic constant was increased from 9.76 × 102 to 8.38 × 108.  相似文献   

17.
Here, we present physical–chemical properties of Linde type A (LTA) zeolite crystals synthesized via conventional hydrothermal and microwave heating methods. Both heating methods produced LTA crystals that were sub-micron in size, highly negatively charged, super-hydrophilic, and stable when dispersed in water. However, microwave heating produced relatively narrow crystal size distributions, required much shorter heating times, and did not significantly change composition, crystallinity, or surface chemistry. Moreover, microwave heating allowed systematic variation of crystal size by varying heating temperature and time during the crystallization reaction, thus producing a continuous gradient of crystal sizes ranging from about 90 to 300 nm. In ion-exchange studies, colloidal zeolites exhibited excellent sorption kinetics and capacity for divalent metal ions, suggesting their potential for use in water softening, scale inhibition, and scavenging of toxic metal ions from water.  相似文献   

18.
Size-controlled nanocrystalline silicon (ncSi) has been prepared from aSiNx/aSi:H multilayers by pulsed laser induced crystallization. Transmission electron microscopy (TEM) analyses show that the growth of ncSi is constrained by the aSiNx/aSi:H interface, and the size of ncSi is controlled by the laser energy density and the aSi sublayer thickness when the aSi sublayer thickness is less than 10 nm. On the basis of the experimental results, we discuss the transitional process from the spherical shape to the cylindrical shape in the growth model of ncSi crystallization. The constrained effect for the crystal growth increases with a decrease of the aSi sublayer thickness. The critical thickness of the aSi sublayer for constrained crystallization can be determined by the present model. Moreover, the increase of the crystallization temperature in the ultra-thin aSi sublayer can be explained. PACS 68.65.+g; 81.40.Ef; 68.35.-p; 61.16.Bg; 61.46.+w  相似文献   

19.
Ultrasound-assisted crystallization (sonocrystallization)   总被引:1,自引:0,他引:1  
The positive influence of ultrasound (US) on crystallization processes is shown by the dramatic reduction of the induction period, supersaturation conditions and metastable zone width. Manipulation of this influence can be achieved by changing US-related variables such as frequency, intensity, power and even geometrical characteristics of the ultrasonic device (e.g. horn type size). The volume of the sonicated solution and irradiation time are also variables to be optimized in a case-by-case basis as the mechanisms of US action on crystallization remain to be established. Nevertheless, the results obtained so far make foreseeable that crystal size distribution, and even crystal shape, can be ‘tailored’ by appropriate selection of the sonication conditions.  相似文献   

20.
Sonication is known to enhance crystallization of lactose from aqueous solutions. This study has attempted to reveal the mechanistic features of antisolvent crystallization of lactose monohydrate from aqueous solutions. Experiments were conducted in three protocols, viz. mechanical stirring, mechanical stirring with sonication and sonication at elevated static pressure. Mechanical stirring provided macroconvection while sonication induced microconvection in the system. Other experimental parameters were initial lactose concentration and rate of antisolvent (ethanol) addition. Kinetic parameters of crystallization were coupled with simulations of bubble dynamics. The growth rate of crystals, rate of nucleation, average size of crystal crop and total lactose yield in different protocols were related to nature of convection in the medium. Macroconvection assisted nucleation but could not give high growth rate. Microconvection comprised of microstreaming due to ultrasound and acoustic (or shock) waves due to transient cavitation. Sonication at atmospheric static pressure enhanced growth rate but reduced nucleation. However, with elimination of cavitation at elevated static pressure, sonication enhanced both nucleation and growth rate resulting in almost complete lactose recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号