首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
异质原子在Cu(001)表面扩散的分子动力学模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
采用分子动力学方法模拟单个增原子Ag,Pd和Cu在Cu(001)表面上的扩散过程.通过对自扩散和异质扩散过程中扩散机制的观察,统计三种不同的增原子在不同温度下的扩散频率,拟合给出扩散势垒和扩散频率的指前因子,并与扩散势垒的静力学计算结果进行比较.结果表明:在800 K以下时,三种增原子均以简单跳跃机制为主扩散,与衬底不互溶的Ag增原子的跳跃频率最大,与衬底互溶的Pd增原子的跳跃频率最小.同质增原子与异质增原子的扩散频率和温度的关系均较好地符合Arrhenius公式,由Arrhenius公式拟合给出的三种不同增原子的扩散势垒与表面结构和增原子表面结合能有关.Pd和Cu增原子从跳跃机制为主向交换机制为主的转换温度分别在825和937 K左右. 关键词: 表面扩散 分子动力学模拟  相似文献   

2.
《Physics letters. A》2014,378(24-25):1727-1732
The molecular dynamics (MD) technique based on semi-empirical potentials, is used to carry out the diffusion of Cu- and Ag-trimer on Cu- and Ag(111) surface at 300, 500 and 700 K temperatures. The constant energy MD simulation elaborates the anharmonic effects at the surface such as fissures, dislocations and vacancy creation, in the presence of island. The fissures and dislocations formed are in the range of 1.5–4 Å and 1–7 Å, respectively, from the island's position. The Cu and Ag islands both diffuse easily on Cu(111) surface, manipulate that the trend of diffusion is faster on Cu surface as compared to Ag surface. The process of breaking and opening of the island has also been observed. Moreover, a surface atom popped-up at 700 K by creating a vacancy near the Cu island on Ag surface. The rate of diffusion increases with the increase in temperature, both for homo- and hetero-cases.  相似文献   

3.
Growing perfect monatomic chains on surfaces is generally a hard task since it depends strongly on the experimental conditions and on the species used as templates or adsorbates. In the present study, the growth of Co and Ag monatomic wires on a Pt(9 9 7) vicinal surface is investigated over a large range of temperature. A semi-empirical potential is used to extract the main diffusion barriers responsible for the growth of Co and Ag wires on the Pt(9 9 7) vicinal surface. Kinetic Monte Carlo simulations are performed to investigate the wire formation at step-edges. We show that step decoration occurs at 150 K for Ag and at temperatures higher than 250 K for Co in agreement with growth experiments. If no interdiffusion is taken into account, Co and Ag behave similarly and perfect wires form between 150 and 500 K for Ag and between 300 and 500 K for Co. In the case of Co, an exchange mechanism leading to interlayer diffusion at step-edges is shown to strongly influence the temperature range for which the perfect wires are observed. An activation barrier of 0.65 eV for this mechanism is found to be adequate to reproduce the experimental features observed by Gambardella et al. [P. Gambardella, M. Blanc, L. Burgi, K. Kuhnke, K. Kern, Surf. Sci., 449 (2000) 93]. At higher temperatures, above 500 K, detachment from steps strongly hinders the wire formation at step feet. As a main conclusion, the exchange diffusion barrier can be extracted directly from the comparison between observation of step decoration and numerical simulations.  相似文献   

4.
The effect of quantum confinement formed by Ag nanoclusters on the self-organization of Cs adatoms on Ag(111) was studied. The existence of allowed and forbidden zones was found for the diffusion motion of Cs adatoms near and on top of the clusters. The formation of the orbits of an adatom’s motion was demonstrated for self-organization process in a Cs adatom ensemble near and on top of the clusters.  相似文献   

5.
Using molecular dynamics simulation and modified analytic embedded-atom method, we have investigated the self-diffusion of clusters on a tungsten (110) surface. As compared to the linear-chain configuration, the close-packed islands for tungsten clusters containing more than nine adatoms have been predicted to be more stable with the relatively lower binding energies. The migration energies show an interesting and oscillating behavior with increasing cluster size. The tetramer, hexamer and octamer have obviously higher migration energies than the others. The different atomic configurations and diffusion mechanisms have been determined during the diffusion processes. It is clear that the dimer-shearing mechanism occurs inside the hexamer, while it occurs at the periphery of heptamer. The successive hopping mechanism of individual atom is of critical importance in the migration of the clusters containing five or fewer adatoms. In addition, the diffusion of a cluster with nine adatoms is achieved through the changes of the cluster shape.  相似文献   

6.
The fundamental possibility of implementing light-controlled atom-by-atom assembly of silver clusters beginning with dimers and trimers via photostimulated diffusion of individual atoms initially adsorbed on the surface of AgCl and ZnS single crystals by mass-spectrometric ion deposition is shown. Possible mechanisms of this process are discussed, including the charge exchange in adatoms via alternating capture of holes and electrons accompanied by the transition to neighboring, energetically more favorable adsorption sites; hopping displacements of adatoms over the surface by gaining kinetic energy upon nonradiative recombination of photocarriers from their levels; and low-barrier diffusion of short-lived negatively charged adatoms with a captured electron.  相似文献   

7.
Mass transport of Ag and In on vicinal Si(111) has been investigated by scanning Auger microscopy (SAM). Highly anisotropic surface diffusion and surface electromigration due to direct current were observed for Ag and In adatoms on 0°−, 0.5°−, 3°− and 6°−off vicinal Si(111) surfaces. The diffusion on the intermediate layer is strongly enhanced in the direction parallel to the step edge for Ag adatoms, while it is remarkably suppressed in the direction perpendicular to the step edge for In adatoms. The activation energy of the diffusion for the Ag adatoms ranged between 0.81 and 1.3 eV, while that for In adatoms increased from 0.31 to 0.66 eV with increasing the vicinal angle. The anisotropic diffusion transport is explained in terms of the step structure and the difference in the binding energy at the step site and the terrace site.  相似文献   

8.
The adsorption of SO2 on Ag(110) and the reaction of SO2 with oxygen adatoms have been studied under ultrahigh vacuum conditions using low energy electron diffraction, temperature programmed reaction spectroscopy and photoelectron spectroscopy. Below 300 K, SO2 adsorbs molecularly giving p(1×2) and c(4×2) LEED patterns at coverages of one half and three quarter monolayers. respectively. At intermediate coverages, streaked diffraction patterns, similar to those reported for noble gas and alkali metal adsorption on the (110) face of face-centered cubic metals were observed, indicating adsorption out of registry with the surface. A feature at low binding energy in the ultraviolet photoemission spectrum appeared which was assigned to a weak chemisorption bond to the surface via the sulfur, analogous to bonding observed in SO2-amine charge transfer complexes and in transition metal complexes. SO2 exhibited three binding states on Ag(110) with binding energies of 41, 53 and 64 kJ mol?1; no decomposition on clean Ag(110) was observed. On oxygen pretreated Ag(110), SO2 reacted with oxygen adatoms to form SO3(a), as determined by X-ray photoelectron spectroscopy. Reacting preadsorbed atomic oxygen in a p(2 × 1) structure with SO2 resulted in a c(6 × 2) pattern for SO3(a). The adsorbed SO3(a) decomposed and disproportionated upon heating to 500 K to yield SO2(g), SO4(a) and subsurface oxygen.  相似文献   

9.
Scanning tunneling microscopy (STM) experiments reveal that Co growth on Ag(1 1 0), at coverages of Co < 1 ML and low substrate temperatures (150 K), involves a concomitant insertion of Co into the top Ag layer and exchange of Ag out onto the surface. At 300 K, coverages of Co > 1 ML gives rise to a 3D nanocluster growth on the surface, with the clusters covered by Ag. Depending slightly on coverage, the clusters have a typical diameter of 3 nm and a height of 0.4 nm. Upon annealing to 500 K, major changes are observed in the morphology of the surface. STM and AES show that there is a reduction of the number of Co islands on the surface, partly due to subsurface Co cluster migration and partly due to sintering into larger clusters.  相似文献   

10.
Diffusion properties of Ni3Al cluster assembled nanostructured materials are investigated at the atomic scale. Two different model samples are considered, at equilibrium at 300 K. One is obtained by modelling cluster compaction under 2 GPa external pressure and the second by accumulating low energy deposited clusters on a Ni surface. They differ essentially by their density, the latter sample presenting an interconnected network of nanopores, which is not observed in the former. At elevated temperatures, cluster coalescence is observed in both, as well as an intense atomic diffusion at the internal surfaces and nanograin interfaces. A method is presented which allows, in a good approximation, to distinguish between the two phenomena and to estimate diffusion coefficients. At temperatures above 400 K, it is found for both samples, irrespective to their density, that the diffusion activation energy at the internal surfaces and interfaces is as low as in a liquid while the grain cores remain crystalline.Received: 20 June 2003, Published online: 16 September 2003PACS: 61.43.Bn Structural modeling: serial-addition models, computer simulation - 36.40.-c Atomic and molecular clusters - 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals  相似文献   

11.
We have investigated the formation and motion of copper adatoms and addimers on Ag(111) between 6 and 25 K with low-temperature scanning tunneling microscopy. The presence of atoms and dimers alters the motion of atoms and dimers via the long-range interaction mediated by the electrons in the two-dimensional surface state band. Above 16 K, dimers show quantum rotor behavior with altered rotational behavior in the presence of an additional adatom. The most favorable diffusional motion of the dimer is identified in combination with molecular dynamics calculations to be a zigzag out-of-cell motion starting above 24 K.  相似文献   

12.
向嵩  庄军  刘磊 《物理学报》1998,47(4):678-685
采用表面嵌入势,用静态计算和分子动力学方法研究了Ag,Pt,Au单个吸附原子在(110)表面上的自扩散现象.分别给出了跳跃机制和交换机制所对应的能量变化曲线及相关原子的运动轨迹,分析了这三种不同金属(110)表面上的自扩散特点,结果与分子动力学模拟及有关的实验结果相符合.  相似文献   

13.
Here, we report on the assembly of thymine molecules into extended straight chains of single and multiple dimer rows on a Si(111)/Ag R30° surface. Using variable temperature scanning tunneling microscopy, we follow the nucleation process and formation of self-assembled structures. Submonolayer coverages at 120 K are disordered and exhibit a high density of thymine dimers. Upon annealing the dimers assemble into extended dimer chains along three equivalent high-symmetry surface directions. At low coverages single dimer rows are favored. At increased coverage chains with multiple dimer rows are observed, with a preference to an even multiplicity. We show that a complex cross-talk between H-bond thymine–thymine interactions and commensurization of dimer chains to the Ag/Si surface leads to this specific layout.  相似文献   

14.
The deposition of silver on an ordered alumina film prepared on Re(0001) surface has been studied by Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and high resolution electron energy loss spectroscopy (HREELS). The results show that Ag grows initially as clusters at 90K and 300K. A red shift of the Ag surface plasmon as a function of decreasing coverage is observed, which is related to the cluster size effect. A surface plasmon characteristic of metallic Ag appears at coverages higher than 2.8 monolayer equivalent.  相似文献   

15.
The chemistry of N2H4 on Si(100)2 × 1 and Si(111)7 × 7 has been studied using scanning tunneling microscopy. At low coverages on Si(100)2 × 1 at room temperature the adsorption sites are distributed randomly on the surface and are imaged as dark spots in the dimer row by the STM. Upon annealing the substrate at 600 K, both isolated reaction products, as well as clusters of reaction products are formed on the surface. The STM images show that the majority of the isolated reaction products are adsorbed symmetrically across the dimers. Based on previous HREELS data, these are most likely NHx groups. However, the clusters are not well resolved. Because of this we speculate that they are not simply symmetrically adsorbed NHx groups, but likely have a more complicated internal structure. At higher coverages, the STM images show that the predominant pathway for adsorption is with the N---N bond parallel to the surface, in agreement with HREELS studies of this system. On Si(111)7 × 7, the molecule behaves in a manner which is similar to NH3. That is, at low coverages the molecule adsorbs preferentially at center adatoms due to the greater reactivity of these sites, while at higher coverages it also reacts with the corner adatoms.  相似文献   

16.
王永亮  张超  唐鑫  张庆瑜 《物理学报》2006,55(8):4214-4220
采用嵌入原子方法的原子间相互作用势,利用准静态分子动力学模拟研究了Cu原子在Cu(001)表面吸附所导致的基体晶格畸变以及对其附近的另一个吸附原子自扩散行为的影响.研究结果表明,吸附原子的存在可以导致多达10层的Cu基体晶格产生畸变.两个吸附原子所产生的晶格畸变应力场之间的相互作用,可以导致吸附原子运动活性的增加.通过比较同一路径上往返跳跃扩散势垒的差异发现,在原子间相互作用势的有效距离之外,两个吸附原子的扩散行为可以认为是存在晶格畸变应力场相互作用的两个独立吸附原子的扩散;在原子间相互作用势的有效距离之 关键词: 表面吸附原子 晶格畸变 表面二聚体 扩散  相似文献   

17.
Formation of Ag clusters on reconstructed surface Si(111)7 x 7 was for the first time observed in real time during deposition by means of scanning tunneling microscopy. The sequences of images taken at room temperature show mechanisms controlling the growth and behavior of individual Ag adatoms. Obtained data reveal new details of attractive interaction between adsorbates occupying adjacent half-unit cells of the 7 x 7 reconstruction. Time evolution of growth characteristics was simulated by means of a simple model. The growth scenario observed in vivo is discussed with respect to previously reported models based on data obtained after finishing the deposition--post-mortem.  相似文献   

18.
It has been shown that interdiffusion along a free vicinal crystal surface can lead, at comparably low temperatures, to layered growth of solid solution over the surface without the involvement of bulk diffusion. The alloy concentration distribution along the surface, as well as the normal rate of solution growth has been calculated. The formation of a layer of the solid solution has been experimentally observed on a vicinal (111) surface of Ni single crystal as a result of surface interdiffusion between Ni and a thin film of Au deposited on a part of the Ni surface. The surface diffusion coefficients, as well as other parameters responsible for the exchange rate between the adatoms and kinks of elementary steps have been measured in the temperature range 550–700°C.  相似文献   

19.
The results of calculations of the total (lateral and vertical) relaxation of the (001) and (111) copper surfaces in the presence of a small cluster of cobalt adatoms, local vibrational density of states and polarizations of these states are presented. The calculations were performed using the atomic interaction potentials in a tight binding approximation. An analysis of the results obtained showed that the presence of a cobalt dimer gives rise to modification of the vibrational states of the copper surface and generation of new modes localized both on the adatoms of the cluster and the surface atoms of the substrate. The revealed anisotropy of surface relaxation along [001] results in deformation of atomic bonding and splitting of the vibrational modes of the dimer. The lifetimes of the vibrational states of the dimer are found to be nearly equal for both surfaces under study, with a frequency shift being however observed. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp.73–78, December, 2008.  相似文献   

20.
Microscopic surface diffusivity theory based on atomic ionization energy concept is developed to explain the variations of the atomic and displacement polarizations with respect to the surface diffusion activation energy of adatoms in the process of self-assembly of quantum dots on plasma-exposed surfaces. These polarizations are derived classically, while the atomic polarization is quantized to obtain the microscopic atomic polarizability. The surface diffusivity equation is derived as a function of the ionization energy. The results of this work can be used to fine-tune the delivery rates of different adatoms onto nanostructure growth surfaces and optimize the low-temperature plasma based nanoscale synthesis processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号