首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 515 毫秒
1.
基于光谱分析技术的作物中杂草识别研究   总被引:5,自引:0,他引:5  
除草剂的精确喷施、物理方法精确除草皆依赖于杂草的自动识别.光合色素和结构差异导致作物、杂草的光谱反射率不同,因此不同植物可以利用光谱特性来区分.利用ASD光谱仪在室内分别测量了棉花、刺儿菜、水稻、稗草等四种植物在350~2 500nm波段范围内的光谱反射率.运用SAS统计软件的STEPDISC过程筛选能够区分作物和杂草的波长;判别模型中加入筛选所得特征波长,利用Discrim蚰过程进行判别分析.实验结果表明,利用3个特征波长385,415和435 nm有效地从双子叶植物棉花中识别出双子叶杂草刺儿菜,其识别率为100%,波长415和435nm的组合对识别模型的贡献最大;利用5个特征波长375,465,585,705和1 035 nm可有效地从单子叶植物水稻中识别出单子叶杂草稗草,其识别率也为100%,黄色到橙色的过渡波长585nm和"红边"内的波长705nm的组合对识别模型的贡献最大.  相似文献   

2.
苗期作物和杂草的光谱分析与识别   总被引:9,自引:5,他引:4  
田间杂草信息是指导变量喷洒除草剂的依据,利用光谱特征识别杂草的方法在实时性方面具有明显的优势。本文利用傅里叶变换红外(FTIR) 光谱法测量并分析了小麦、小藜和荠菜等几种杂草在700~1 100 nm波长范围内的反射率,再运用SPSS统计软件进行判别分析。先把原始数据进行压缩和标准化处理,然后运用逐步判别分析法寻求特征波长点,最后以选定的特征波长点为变量建立判别模型进行判别分析。统计分析的结果表明: 运用选定的特征波长点建立判别模型识别小麦和杂草的正确识别率达到了97%;在680~750 nm“红边”附近的特征波长点较为显著;在一定范围内,正确识别率随着特征波长点个数的增加而增加。本研究选定特征波长点,选择适当的滤光片,并配合黑白摄像机对小麦和杂草进行了多光谱图像采集和分析。  相似文献   

3.
基于可见-近红外光谱分析的圆白菜与杂草识别研究   总被引:1,自引:0,他引:1  
杂草的自动识别是实现作物草害精准施药的基础。利用ASD光谱仪采集两个品种的圆白菜及稗草、狗尾草、马唐、牛筋草和小藜等五种杂草在350~2 500nm波段内的冠层光谱反射率。根据光谱曲线特征,在不同波段内对数据进行不同程度的压缩,以提高运算效率;利用不同参数设置的Savitzky-Golay(SG)卷积平滑求导和多元散射校正方法(MSC)的不同顺序组合对光谱去噪,然后结合主成分分析法(PCA)提取主成分,建立模型,最后利用簇类的独立软模式(SIMCA)分类法对各种植物进行分类,并比较分类结果。试验结果显示利用MSC与3阶5次21点SG相结合的方法对光谱数据预处理后,运用PCA提取前10个主成分作为分类模型的输入变量,取得了100%的分类正确率,能够快速无损地识别圆白菜与几种常见杂草。  相似文献   

4.
在田间原位对烟叶成熟度进行判别,能够有效减少由于对成熟度判断错误而导致的烟叶损失率升高、质量下降的问题,而传统的人眼结合叶龄的田间成熟度判别方法缺少客观性,因此提出采用光谱特征参数结合支持向量机的方法对田间原位烟叶成熟度进行判别。以专家评定并在田间原位进行测量的五个成熟度等级共351个烟叶反射光谱作为试验样品,五个成熟度等级分别为M1,M2,M3,M4,M5。通过对反射光谱的分析发现,不同成熟度烟叶的光谱在可见光波段能够得到区分,而在近红外波段区分不明显,因此在可见光波段进行分析建模。分别采用可见光范围内的连续光谱(350~780 nm)、特征波段(496~719 nm)、光谱特征参数(绿峰幅值、绿峰位置、红边幅值、蓝边幅值、红边面积、蓝边面积、红边位置、蓝边位置)作为输入变量,采用支持向量机方法(supportvector machine,SVM)建立烟叶成熟度判别模型。结果表明,应用可见光光谱特征参数作为输入变量所建立的模型的正确识别率达到98.85%,而应用可见光连续谱、可见光特征波段作为输入变量的正确识别率分别为90.80%和93.10%。因此使用可见光光谱特征参数建立支持向量机的鲜烟叶成熟度判别模型对田间原位烟叶成熟度进行判别是可行的。  相似文献   

5.
结合光谱图像技术和SAM分类法的甘蓝中杂草识别研究   总被引:3,自引:0,他引:3  
杂草自动识别技术是实现变量喷洒、精准施药的关键,更是制约其实现的瓶颈,因此,准确、快速、无损地实现杂草自动识别已成为精准农业的一个重要研究方向。利用高光谱成像系统采集甘蓝幼苗及小藜、稗草、牛筋草、马唐和狗尾草等五种杂草在1 000~2 500 nm波长区间的高光谱图像数据,在ENVI中经过MNF变换对数据降噪、去相关,并将波段维数从256维降到11维,通过提取感兴趣区域获得标准光谱,最后利用SAM分类法识别甘蓝与杂草,光谱角弧度阈值为0.1弧度时,分类效果良好。在HSI Analyzer中选择训练像元获得标准光谱后,利用SAM分类法识别甘蓝与杂草,并利用人工分类图与SAM分类图比较定量度量杂草的识别正确率,结果表明,当参数设置为5点平滑、0阶导数和7度光谱角度时,分类效果最佳,杂草识别率为80.0%,非杂草类识别率为97.3%,总体识别率为96.8%。应用光谱图像技术与SAM分类法相结合的方法进行杂草检测,充分利用了光谱和图像的融合信息,该方法应用空间的分类算法来建立光谱判别方法的训练集,在像素级别上考察光谱矢量之间的相似性,融合了光谱和图像两者的优势,同时兼顾了准确性和快速性,并且在整场范围内(行间和行内)改善杂草检测范围,为农业精确管理中需要植物精准信息的应用领域提供了相关的分析手段和方法。  相似文献   

6.
高光谱图像技术在农产品检测及识别方面有广阔的应用前景。野生黑枸杞经济效益显著,经常被种植黑枸杞冒充。提出一种利用高光谱图像对野生黑枸杞无损快速识别的方法。主要内容和结果如下:(1)共采集256份(野生、种植各128份)黑枸杞在900~1 700 nm范围的高光谱反射光谱,每份平均光谱作为此样品的光谱;(2)采用标准正态变换(SNV)对采集的光谱预处理;基于Kennard-Stone法,按照校正集和预测集比例为2∶1对样品划分,用连续投影算法(SPA)对光谱进行降维处理,提取特征波长30个;分别将全光谱和SPA 提取的30个特征波长作为模型输入,建立支持向量机(SVM)、极限学习机(ELM)和随机森林(RF)识别模型。(3)结果表明,在识别野生黑枸杞模型中,基于全光谱和SPA建立的SVM,ELM和RF模型校正集识别率均高于98.8%,基于全光谱和SPA建立的SVM,ELM和RF模型预测集识别率均高于97.7%。基于全光谱(FS)建立的三种识别模型略优于基于SPA建立的三种识别模型。但从简化模型方面,SPA提取的特征波常数仅为全光谱的11.8%,大大降低了模型运算量。三种模型中,基于随机森林模型无损识别野生黑枸杞效果最好,均达到100%。研究表明,利用高光谱图像技术结合分类模型可快速识别野生黑枸杞。  相似文献   

7.
黑枸杞含有花青素、多糖、氨基酸和微量元素等多种营养成分,具有极高的经济和医药价值,其市场价格很高。唐古特白刺果外观和黑枸杞极为相似,其价格较低,经常被用于冒充黑枸杞。高光谱图像技术结合图像和光谱于一体, 常用于食品检测和识别等领域。结合高光谱图像技术,无损识别黑枸杞和唐古特白刺果。采集黑枸杞(180份)和唐古特白刺果(180份)的高光谱图像,利用掩膜提取光谱,光谱范围为900~1 700 nm,共254个波段,去除前22个异常波段。采用Kennard-Stone法划分样品,校正集∶预测集=2∶1;采用连续投影算法(SPA)法对光谱进行降维,设定提取特征波长范围为0~30,最终提取特征波长为20个;分别将全光谱(FS)和SPA提取的20个特征波长作为模型输入,建立支持向量机(SVM)和极限学习机(ELM)识别模型。结果表明,基于FS和SPA建立的SVM模型识别率为100%;基于FS和SPA建立的ELM模型识别率为100%;SPA法在不降低模型识别精度的情况下,能减少模型输入,输入仅为FS的8.62%,大大降低模型运算量。此研究为识别黑枸杞和唐古特白刺果提供了参数。  相似文献   

8.
转基因技术在过去的几十年里快速发展, 然而此项技术对生态环境、伦理道德等可能带来的影响尚存争议,因此针对农作物的转基因成分检测和鉴别的相关技术研究十分重要。本研究以转双价基因(cry1Ab/cry2Aj-G10evo)玉米籽粒和玉米面粉为研究对象,采用近红外光谱仪采集900~1 700 nm波段范围的光谱,结合 Savitzky-Golay(SG)平滑算法对提取出的光谱数据进行去除噪声处理。基于全波段光谱和PCA主成分分别建立了偏最小二乘判别分析(PLS)和支持向量机判别模型(SVM)。试验结果表明,在转基因玉米籽粒全谱的判别分析模型中,SVM判别模型效果要优于PLS判别模型,SVM模型识别正确率达到90%以上,PLS的模型识别率只有85%左右。以PCA降维后建立的模型中,SVM模型也取得了最优的效果,建模集和预测集识别正确率达到100%。虽然转基因玉米在研磨加工后外源蛋白和DNA有所下降,但是转基因玉米粉末基于全波段光谱建立的SVM模型的建模集正确率仍有90.625%。结果表明应用近红外光谱技术集合化学计量学方法对转基因玉米的鉴别是可行的,为转基因玉米乃至其他转基因农产品的鉴别提供了技术支持,具有重要的理论意义和应用价值。  相似文献   

9.
基于高光谱图像技术的玉米杂交种纯度鉴定方法探索   总被引:2,自引:0,他引:2  
对玉米种子高光谱图像的光谱维信息进行分析,探索利用高光谱图像技术鉴定玉米杂交种纯度的可行性。实验中利用高光谱成像系统采集玉米品种农华101的母本和杂交种的高光谱图像, 波长范围871~1699 nm;在每个玉米样本上提取感兴趣区域的平均光谱信息,利用处理后的数据建立农华101母本和杂交种的鉴定模型。讨论了样品的摆放方式(种子胚正对光源和背对光源,种子在样品台上的位置)和实验环境对鉴定模型性能的影响。鉴定模型对不同摆放方式和实验环境下获得的同种样品的光谱的正确识别率和正确拒识率均达到90%以上,模型稳健性良好。利用Qs方法选择特征波段[1],发现在1 230 nm附近(1 195~1 246 nm)农华101的母本和杂交种差异最大。实验中利用特征波段内的数据进行建模和测试,正确识别率和正确拒识率达到90%以上,与利用全波段(925~1597 nm)获得的识别效果相当。分析结果表明,利用高光谱图像技术鉴定玉米杂交种纯度是可行的。  相似文献   

10.
基于可见光谱和支持向量机的黄瓜叶部病害识别方法研究   总被引:1,自引:0,他引:1  
以黄瓜叶部病害作为研究对象,基于可见光谱反射率差异识别黄瓜叶部病害,研究基于SVM的黄瓜叶部病害识别预测模型。采用小波变换进行数据预处理;选取Otsu、边缘分割法和K均值聚类三类分割方法进行病斑分割,比较错分率和运行时间,K均值聚类方法更适合黄瓜叶部病斑分割;提取纹理、颜色和形状特征参数,共15个特征参数;通过交叉验证选择最优参数cg,对核函数参数进行优化处理,并通过比较线性核、多项式核、RBF核等不同核函数情况下SVM的正确识别率,确定RBF核SVM模式识别方法能够更精准地识别黄瓜叶部病害。并将基于SVM与另外两种常见的黄瓜叶部病害识别方法,BP神经网络和模糊聚类进行比较,结果表明,基于SVM的识别模型对霜霉病的正确识别率为95%,白粉病和褐斑病的正确识别率均为90%,平均诊断正确率为92%;该模式识别方法识别效果最佳,运行时间最短,为基于可见光谱的黄瓜病害识别模型提供参考。  相似文献   

11.
基于支持向量机的水稻叶面积指数高光谱估算模型研究   总被引:3,自引:1,他引:2  
为了研究支持向量机(SVM)对于作物农学参数高光谱估算的能力,通过大田小区试验,测定了2个品种、3个供氮水平处理的水稻在不同生长期的冠层高光谱反射率(350~2 500 nm)。依据Ladsat-5的TM传感器波段宽度,将高光谱反射率转换为10种不同的植被指数。利用所有样本的植被指数和水稻叶面积指数(LAI),通过不同统计模型的模拟分析,依据模型的R2选取了三种相关性较高的统计关系(包括NDVIgreen的指数关系、TCARI/OSAVI的乘幂关系和RVI2的乘幂关系)。对这三种关系,通过具有不同核函数的SVM模型和相应统计模型对LAI进行估算。结果表明:所有的SVM模型都具有较低的均方根误差值,估算精度都高于相应的统计模型;基于TCARI/OSAVI的POLY核SVM具有最高的估算精度,其RMSE比相应的统计模型降低近11个百分点。因此,SVM方法用于水稻LAI高光谱估算具有良好的学习能力和鲁棒性。  相似文献   

12.
新疆天山北坡山地草甸是天山山区草地生产力最高的草地类型,草地退化情况较为严重。对草地植被进行分类与识别,监测草地生态系统本底状况,可以快速、准确、有效的评价草地退化动态与程度,是进行生态重建的关键。为了探索适合草地植被的分类方法,选择天山北坡中段山地草甸植被作为研究对象,利用高光谱成像光谱仪(SOC710VP)获取了典型植被多季相(4个关键生育期)的原始反射光谱数据,通过多项式卷积平滑(S-G)及最小噪声分离(MNF)变换对光谱数据进行平滑去噪及降维处理,分别采用支持向量机(SVM)、BP人工神经网络(BP-ANN)及波谱角填图(SAM)三种方法建立分类模型,并对分类结果进行了对比分析。结果表明:使用S-G滤波及MNF变换预处理方法可以有效的对草地植被高光谱数据进行降维除噪,获得较平滑的光谱曲线,减少了数据的冗余程度并缩短了分类时间。不同季相山地草甸植被的“绿峰”、“红谷”及“红边”等参数差异较大,在植被生长旺盛期(4月—5月)的光谱曲线特征比黄枯期的光谱曲线特征更容易区分,这个时期分类精度较高。SVM分类模型在返青期(4月)和分蘖(枝)期(5月)总体分类精度均超过了90%,Kappa系数也超过了0.9;利用SVM方法进行分类时,在植物生长旺盛期(4月—5月)Polynomial核函数分类精度较高,植物成熟期(6月—9月)径向基核(RBF)函数分类精度较高。BP-ANN在分蘖(枝)期分类精度较高,总体分类精度为91.07%,Kappa系数为0.89,其他时期分类效果一般,虽然在MNF变换降维后能极大的缩短数据处理时间,但分类时间还是较SVM时间要长。SAM分类速度最快,但在各生育期的分类精度都较低,最高值为分蘖(枝)期的总体分类精度77.80%,Kappa系数为0.73。因此,利用Polynomial核函数的SVM分类模型适合对山地草甸植被进行分类识别,分类结果类别完整,准确度高,误分、错分现象相对较少,相比BP-ANN及SAM等高光谱数据分类方法具有较大的优势。  相似文献   

13.
拉曼光谱结合模式识别方法用于大豆原油掺伪的快速判别   总被引:1,自引:0,他引:1  
大豆原油是我国的战略储备物资,然而目前储油市场上频繁出现大豆原油掺混的现象严重影响了食用油储备安全。基于此,通过大豆原油与部分植物精炼油拉曼谱图的特征差异,并结合主成分分析-支持向量机(PCA-SVM)模式识别建立了大豆原油是否掺伪的快速判别方法。以28个大豆原油、46个精炼油、110个掺伪油的拉曼谱图为模型样本;选择位于780~1 800 cm-1波段的谱图,预处理方法同时采用Y轴强度校正、基线校正和谱图归一化法;在此基础上应用PCA法提取特征变量,即以贡献率最高前7个主成分为变量进行SVM分析。SVM校正模型的建立是以随机选取的20个大豆原油和75个掺伪油样组成校正集,以8个大豆原油和35个掺伪油样组成验证集,分别运用并比较四种核函数算法建立的大豆原油SVM分类模型,并采用网格搜索法(grid-search)优化模型的参数,以四种模型的分类性能作为评判标准。结果表明:应用线性核函数算法构建的SVM分类模型可以很好地完成掺伪大豆原油的判别,校正集识别准确率达到100%,预测结果的误判率为0,判别下限为2.5%。结果表明应用拉曼光谱结合化学计量学能够用于大豆原油掺伪的快速鉴别。拉曼光谱简便、快速、无损、几乎没有试剂消耗,适合现场检测,从而为大豆原油的掺伪分析提供了一种新的备选方法。  相似文献   

14.
混合气体红外光谱支持向量机分析的新方法   总被引:3,自引:3,他引:0  
介绍了一种基于支持向量机的混合气体红外光谱组分浓度和种类分析的新方法。利用核函数将组分气体特征吸收谱线重叠严重的混合气体光谱在高维空间变换后,建立SVM回归校正模型,进行混合气体浓度分析。在利用支持向量机回归校正模型进行混合气体组分浓度分析的同时,证明支持向量机回归校正模型也可用于混合气体组分种类分析。对不同组分和不同组分浓度的混合气体红外光谱数据进行了实验,研究了谱仪扫描间隔、分析特征波长范围、核函数和惩罚因子等因素对分析结果的影响。混合气体组分浓度实验结果的最大平均绝对误差Mean AE为0.132%;混合气体组分种类识别的准确率大于94%。解决了传统的光谱分析方法中光谱特征谱线重叠、光谱数据的维数大、定性和定量分析无法使用同一方法等问题,可用于其他混合气体的红外光谱分析,具有实际应用价值。  相似文献   

15.
植被冠层反射太阳光会产生部分偏振光,这为偏振遥感探测提供了信息源。利用地基平台开展野外偏振测量是非常重要的研究,它不仅能获取植被冠层本质的偏振反射特性,而且还可以与机载或者星载平台数据进行匹配;虽然研究者们已经通过机载或者星载偏振探测器获取了大量植被冠层的偏振反射信息,但是关于地面植被冠层偏振反射分布特性的研究却很少。因此,为了详细研究植被冠层的偏振反射特性,基于野外多角度高光谱偏振测量与偏振反射物理机制,分析了植被冠层偏振光谱特性及其偏振反射分布特性;随后,反演了两种偏振模型的参数,将测量值与模拟值进行对比分析。研究结果发现,植被冠层的偏振反射具有明显的各项异性特征,而且与波长之间存在微弱的关系;同时,偏振模型可以很好地模拟植被冠层的偏振反射信息,可以作为研究植被冠层的理论依据。该研究测量的偏振反射信息与模型计算值之间呈现良好的吻合性,既描述了植被冠层偏振反射分布特性,又证明模型的有效性和测量结果的准确性。对植被冠层偏振特性的详细研究,不仅有助于完整地解释植被冠层与电磁波之间的辐射响应特征,而且对于偏振遥感对地观测以及地表偏振信息对大气偏振信息的研究也具有重要科学价值。  相似文献   

16.
在滞尘影响下的植被叶片光谱变化特征研究   总被引:2,自引:0,他引:2  
为建立以高光谱数据为基础的叶片滞尘质量反演模型,沿北京市区采集了30个大叶黄杨叶片样本。利用电子分析天平和光谱仪(analytical spectral devices ASD FieldSpec Pro)测定“除尘前”与“除尘后”叶片质量及光谱反射率曲线,以获取叶片尘埃量、光谱信息等数据。随后以传统意义和偏最小二乘(PLS)回归模型为基础,以探究空气尘埃量与光谱曲线之间可能存在的关系,阐述了叶片尺度上尘埃量对植物光谱特征的影响。结果为:除尘前后叶片光谱曲线在350~700, 780~1 300, 1 900~2 500 nm波段区间内有较大差异,同时尘埃量与叶片单波段光谱反射率比值呈负相关,相关度最大值点为737波段,属于近红外波段,相关系数可达-0.8左右。在尘埃量与叶片光谱多波段组合关系研究中得到,948和945波段构成的NDVI指数与尘埃量的相关度最大,相关系数可达0.76。在叶片滞尘量反演研究中,对比传统意义滞尘量回归模型,引进的偏最小二乘算法(PLS)可使叶片滞尘量反演精度略有提高,最后由回归模型精度评定可得偏最小二乘法反演效果较传统回归好。  相似文献   

17.
对感染黑斑病的刺五加叶片进行光谱特性研究,能为药用植物病害的早期筛选与精准治疗提供重要研究资料。实验目的,运用高光谱成像技术实现植物病害的自动监督分类与识别。实验过程,首先使用高光谱成像系统在可见光波段(380~960 nm)内采集刺五加黑斑病的叶片样本,光谱数据经过去除亮暗噪声和平滑预处理后,再经过主成分分析实现数据降维,继而运用基于不同核函数的支持向量机法建立分类模型,最后利用总体分类精度、Kappa系数等因子评价不同核函数对分类器性能的影响。根据叶片表面的特征将其分为四类样本:健康亮部、健康暗部、轻度病害和重度病害等。对比各类样本的光谱可知,刺五加的健康样本在540 nm波长存在一个明显峰值,在620~680 nm光谱曲线急剧上升;而病害样本的光谱反射率呈现缓慢且平稳的上升趋势,上述特征能够将图像空间上反射强度接近的健康亮部和严重病害完全区分开。经对比发现前四个主成分(PC1,PC2,PC3,PC4)在分类表达上存在差异,主要表现为PC1含有的信息多,能够较好地区分各类样本;PC2则出现健康亮部和严重病害的交叉混淆;PC3是对于PC2的补充,能基本完整地表达轻微病害;PC4的贡献率仅有0.19%,依然能够准确地识别严重病害。不同主成分分量在表达各类样本特征中存在的差异能够作为复杂样本分类的参考依据。对比四种核函数对支持向量机分类器性能的影响,结果显示线性核函数的识别过程受光强反射的影响较大,Sigmoid核函数的训练精度易受数据集大小的影响,在识别健康亮或暗,以及轻微病害上均存在一定的误差,多项式核函数与径向基核函数的效果较好,其中,多项式核函数的精度更高,为92.77%。研究表明,利用高光谱成像技术能够准确地识别刺五加的健康叶片和患病叶片,为实现自动诊断药用植物叶片病害提供新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号