首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The total density of occupied states in the valence band of CoO and Co3O4 is determined by XPS and UPS. From variations of excitation probability of the bands, the 4 e V wide O2p band is shown to be located around 5 eV for both oxides, while structures obtained from photoionisation of the localized 3d band spread over 10 eV range below the Fermi level overlapping with O2p band. The 3d peaks located at binding energy <3 eV correspond to the calculated energy of the dn ?1 manifold final state in the octahedral and tetrahedral crystal field of CoO and Co3O4. The 3d levels at higher binding energy are shown to occur from configuration interaction in both final and initial states. These last peaks are higher in intensity for CoO relative to Co3O4. A superior limit for the width of the 3d initial band in a one electron energy diagram is given to be <3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV from shake-up and Auger energy confirms the Mott insulator nature of CoO.  相似文献   

2.
Cobalt oxide (Co3O4) nanoplatelet shape like nanostructures have been successfully synthesized through a simple microwave route for the first time using cobalt acetate, NaOH and citric acid at 200 °C for 30 min. The structure and morphology of as-prepared Co3O4 nanoplatelets are characterized by means of powder X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), and scanning electron microscope (SEM). XRD measurements indicate that the product has a perfect crystalline cubic phase of Co3O4 with a lattice constant a=8.082 Å. The SEM images show that the obtained Co3O4 nanopowder consists of nanoplatelets with diameter 125 nm and thickness 20 nm. Energy-dispersive X-ray spectroscopy (EDS) show that the composition of Co3O4 is stoichiometric. Room temperature photoluminescence measurement is exhibited by a strong UV emission and a suppressed green emission, confirming the good optical properties for the as-prepared Co3O4 nanoplatelets.  相似文献   

3.
Results obtained by means of the emission Mössbauer spectroscopy in CoO and Co3O4 systems kept under relatively high oxygen pressure (air close to the normal pressure) are reported. Broadening of the 14.4-keV 57Fe Mössbauer line due to the diffusion of iron atoms in CoO has been investigated in the temperature range between 1275 and 1450 K. The excess of the linewidth caused by diffusive motions obeys the Arrhenius law with the activation energy of 1.86(8) eV. Mixed valence oxide Co3O4 was examined vs. temperature. Measurements were performed from the room temperature till 1073 K. Tetrahedrally coordinated iron impurities in the Co3O4 host lattice are in the high spin trivalent state despite that parent Co is divalent. The anharmonic contribution to the lattice vibrations at high temperatures was observed and analyzed for both CoO and Co3O4.  相似文献   

4.
Cobalt oxalate was used as a precursor to prepare Co3O4 nanorods by thermal decomposition. The combinations of triphenylphosphine and oleylamine were added as surfactants to control the morphology of the particles. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The diameters of Co3O4 nanorods are 20 nm and the average lengths are around 500 nm. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors, the enhanced coercivity (Hc) and decreased saturation magnetization (Ms) in contrast to their respective bulk materials. The study provides a simple and efficient route to synthesize Co3O4 nanorods at low temperature.  相似文献   

5.
In this work, two different types of Co3O4 nano-crystals were synthesized by (i) conventional direct solid state thermolysis of cobalt terephthalate metal-organic framework (MOF-71) and (ii) new indirect solid state thermolysis of Co(OH)2 derived by alkaline aqueous treatment of MOF-71. The products were then characterized by X-ray diffraction technique (XRD), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Reflection electron energy loss spectroscopy (REELS), Brunauer, Emmett, and Teller (BET), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. By REELS analysis the energy band gap of MOF-71 was determined to be 3.7 eV. Further, electrochemical performance of each Co3O4 nanostructure was studied by the cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a three-electrode system in KOH electrolyte. An asymmetric supercapacitor was fabricated using indirect Co3O4 nanoparticles as cathode and electrochemically reduced graphene oxide as anode, and the electrochemical properties were studied and showed a high energy density of 13.51 Wh kg−1 along with a power density of 9775 W kg−1 and good cycling stability with capacitance retention rate of 85% after 2000 cycles.  相似文献   

6.
Antiferromagnetic Co3O4 nanoparticles with diameter around 30 nm have been synthesized by a solution-based method. The phase identification by the wide-angle X-ray powder diffraction indicates that the Co3O4 nanoparticle has a cubic spinel structure with a lattice constant of 0.80843(2) nm. The image of field emission scanning electron microscope shows that the nanoparticles are assembled together to form nanorods. The magnetic properties of Co3O4 fine particles have been measured by a superconducting quantum interference device magnetometer. A deviation of the Néel temperature from the bulk is observed, which can be well described by the theory of finite-size scaling. An enhanced coercivity as well as a loop shift are observed in the field-cooled hysteresis loop. The exchange bias field decreases with increasing temperature and diminishes at the Néel temperature. The training effect and the opening of the loop reveal the existence of the spin-glass-like surface spins.  相似文献   

7.
The spinel CoFe2O4 has been synthesized by combustion reaction technique. X-ray photoelectron spectroscopy shows that samples are near-stoichiometric, and that the specimen surface both in the powder and bulk sample is most typically represented by the formula (Co0.4Fe0.6)[Co0.6Fe1.4]O4, where cations in parentheses occupy tetrahedral sites and those within square brackets in octahedral sites. The results demonstrate that most of the iron ions are trivalent, but some Fe2+ may be present in the powder sample. The Co 2p3/2 peak in powder sample composed three peaks with relative intensity of 45%, 40% and 15%, attributes to Co2+ in octahedral sites, tetrahedral sites and Co3+ in octahedral sites. The O 1s spectrum of the bulk sample is composed of two peaks: the main lattice peak at 529.90 eV, and a component at 531.53 eV, which is believed to be intrinsic to the sample surface. However, the vanishing of the O 1s shoulder peak of the powder specimen shows significant signs of decomposition.  相似文献   

8.
In this study, facile preparation of pure and nano-sized cobalt oxides particles was achieved using low-cost mechanical ball-milling synthesis route. Microstructural and morphological properties of synthesised products were characterised by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. XRD results indicated that the fabricated samples composed of cubic pure phase CoO and Co3O4 nanocrystalline particles with an average crystallite size of 37.2 and 31.8 nm, respectively. TEM images showed that the resulting samples consisted of agglomerates of particles with average diameter of about 37.6 nm for CoO and 31.9 nm for Co3O4. Phase purity of the prepared samples was further investigated due to their promising technological applications. Local atomic structure properties of the prepared nanoparticles were probed using synchrotron radiation-based X-ray absorption spectroscopy (XAS) including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). EXAFS data analysis further confirmed the formation of single-phase CoO and Co3O4 nanoparticles. In addition, structural properties of cobalt oxide nanoparticles were investigated by performing density functional theory calculations at B3LYP/TZVP level and Born–Oppenheimer molecular dynamics. Theoretical calculations for both prepared samples were found to be consistent with the experimental results derived from EXAFS analysis. Obtained results herein reveals that highly crystalline and pure phase CoO and Co3O4 nanoparticles can be synthesised using simple, inexpensive and eco-friendly ball-milling method for renewable energy applications involving fuel cells and water splitting devices.  相似文献   

9.
GaN nanorods were synthesized from the reaction of a Ga/Ga2O3 mixture with NH3 on Si substrates by chemical vapor deposition. The synthesized products were characterized by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. The nanorods are highly single crystalline and possess uniform smooth surfaces. PL revealed only a strong emission at 3.268 eV, ascribed to free exciton (FX) transitions, at room temperature; while the well-known yellow luminescence band centered at 2.2-2.3 eV was not detected. Four first-order phonon modes, corresponding to the A1(TO), E1(TO), E2(high), and A1(LO) at ∼531, 554, 564, and 721 cm−1, respectively, were observed by Raman backscattering. The red-shift of the FX emission peak and the down-shifts of the Raman modes by a few wave numbers are attributed to the presence of tensile strain inside GaN nanorods.  相似文献   

10.
This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray diffraction,Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy reveal that the grown β-Ga2O3 nanorods have a smooth and clean surface with diameters ranging from 100 nm to 200 nm and lengths typically up to 2μm. High resolution TEM and selected-area electron diffraction shows that the nanorods are pure monoclinic Ga2O3 single crystal. The photoluminescence spectrum indicates that the Ga2O3 nanorods have a good emission property. The growth mechanism is discussed briefly.  相似文献   

11.
Nanocrystalline Co3O4 powders were synthesized by aerosol flame synthesis (AFS) method for the anode of lithium ion batteries and the basic electrochemical properties were investigated. The effects of synthesis conditions and heat-treatment temperature on the morphology, crystallite size and electrochemical properties were investigated. As-prepared soot contained Co3O4, CoO and Co(OH)2, which were eventually converted into cubic spinel Co3O4 by post heat treatment. The as-prepared particle size was in the range of 10-30 nm and grew to 50-85 nm by the heat treatment. With growing particle size and improved crystallinity, charge-discharge capacity and cycle performance were improved and the discharge capacity of the powder heat-treated at 700 °C was 571 mAh/g after 30 cycles, which was better than Co3O4 powder reported in the previous literature.  相似文献   

12.
We have measured the electron energy loss spectra of Ca2V2O7 in the reflexion mode, at incident energies between 200 and 2400 eV, and the X-ray photoelectron spectra excited by Al K α radiation. The abundant loss structures observed can be correlated with the possible interband transitions, collective oscillations, and excitation of O2s and V3p electrons within the V2O74- ion. The gap width and molecular orbital (MO) spread (or splitting) is about l eV larger in the V2O74- ion than in its component VO43- ion. Excitation of O2s states, which may occur together with some MO over-gap transitions, displaces the collective oscillations about 7 eV towards lower energies. Deeper V3p electrons are excited with a maximum energy loss some 7 eV above their binding energy. Cross transitions from Ca3p levels into some empty states of the V2O74- ion, or direct transitions to available states of the Ca2+ ion could not be unambiguously identified. The energy dependence of the excitation cross section and of the electron penetration depth results in a significant variation of the relative intensity of various losses over the investigated energy range.  相似文献   

13.
Three kinds of Co3O4 nanomaterials with different morphologies were synthesized controllably by a post-anneal-assisted hydrothermal method in this study. X-ray diffraction and scanning electron microscopy indicated that all three kinds of samples were pure cubic phase of Co3O4 with morphologies of nanorods, nanoclusters, and nanoplates. Moreover, the transmission electron microscopy (TEM) and high-resolution TEM showed that the Co3O4 nanorods were bamboo-like and highly crystalline structures. When these materials were applied to the lithium-ion batteries (LIBs) as anode materials, the Co3O4 of nanorods demonstrated the best performance. It has a stable reversible capacity of 954 mAh g?1 as the anode of a LIB, much higher than the other two kinds of Co3O4 of rod-like nanoclusters and nanoplates, even after 35 cycles. All results showed that the morphology and microstructure take very important roles in the performance of Co3O4 as the anode materials in LIBs.  相似文献   

14.
The silicates Ca3Sc2Si3O12, Ca3Y2Si3O12 and Ca3Lu2Si3O12, both undoped and doped with Pr3+ ions, have been synthesized by solid-state reaction at high temperature. The luminescence spectroscopy and the excited state dynamics of the materials have been studied upon VUV and X-ray excitation using synchrotron radiation. All doped samples have shown efficient 5d-4f emission upon direct VUV excitation of 5d levels, but only Ca3Sc2Si3O12:Pr3+ shows luminescence upon interband VUV or X-ray excitation. The VUV excited emission spectra of Ca3Y2Si3O12:Pr3+ and Ca3Lu2Si3O12:Pr3+ show features attributed to emission from two distinct sites accommodating the Pr3+ dopant. The decay kinetics of the Pr3+ 5d-4f emission in Ca3Sc2Si3O12:Pr3+ upon VUV excitation across the band gap are characterized by decay times in the range 25-28 ns with no significant rise after the excitation pulse. They appear to be faster upon X-ray irradiation than for VUV excitation. Weak afterglow components are attributed to defect luminescence.  相似文献   

15.
汪建军  方泽波  冀婷  朱燕艳  任维义  张志娇 《物理学报》2012,61(1):17702-017702
利用分子束外延系统在Si (001) 衬底上制备了单晶Tm2O3薄膜, 利用X射线光电子能谱研究了Tm2O3相对于Si的能带偏移. 得出Tm2O3相对于Si的价带和导带偏移分别为3.1 eV± 0.2 eV和1.9 eV± 0.3 eV, 并得出了Tm2O3的禁带宽度为6.1 eV± 0.2 eV. 研究结果表明Tm2O3是一种很有前途的高k栅介质候选材料. 关键词: 2O3')" href="#">Tm2O3 X射线光电子能谱 能带偏移  相似文献   

16.
Orthorhombic Bi2S3 with different morphologies was successfully synthesized by the acid-catalyst hydrothermal reactions of bismuth nitrate (Bi(NO3)3) and thiourea (NH2CSNH2) solutions containing different amounts of hydroxyethyl cellulose (HEC). Phase, morphologies, and optical properties were characterized by X-ray diffraction, selected area electron diffraction, scanning and transmission electron microscopy, and ultraviolet-visible spectroscopy. The products, hydrothermally synthesized in the HEC-free, 0.25 g HEC-added, 0.5 g HEC-added and 1.00 g HEC-added solutions, were respectively proved to be orthorhombic Bi2S3 irregular nanorods, complete urchin-like colonies of regular nanorods, incomplete urchin-like colonies of regular nanorods, and highly crystalline regular nanorods growing along the [001] direction. Tauc band gaps of the orthorhombic Bi2S3 nanorods, synthesized in the HEC-free, 0.25 g HEC-added, and 1.00 g HEC-added solutions were determined to be 3.0, 1.75 and 1.8 eV, respectively. Formation mechanism of orthorhombic Bi2S3 nanorods, synthesized in the HEC-free and HEC-added solutions, was also discussed at great detail.  相似文献   

17.
The Fuchs-Kliewer phonon spectrum of single crystal Co3O4(110) has been analyzed by high resolution electron energy loss spectroscopy (HREELS) and the four fundamental phonon losses have been identified at 26.8, 47.5, 71.1 and 84.7 meV (216, 383, 573 and 683 cm−1). This is the first HREELS study reported for an intrinsic spinel single-crystal surface with primary focus on the Fuchs-Kliewer phonon structure. The Co3O4 crystal is first characterized by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED), which establish the composition, cleanliness, and order of the (110) surface. Electron scattering is then used to obtain a series of well-resolved Fuchs-Kliewer phonon spectra over 2.25-14.25 eV incident electron energy range. The variation in phonon intensity with primary beam energy is shown to agree with that predicted by dielectric theory.  相似文献   

18.
PbO–As2O3 glasses mixed with different concentrations of CoO (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy, EDS and differential scanning calorimetric techniques. The X-ray diffraction studies have indicated the presence of Pb(As2O6), Pb3(AsO4)2, Co6As2O11, Co3O4 crystalline phases in these samples. Optical absorption, IR and photoluminescence studies of these samples have been carried out. The analysis of the results of these studies has indicated that the cobalt ions exist in Co2+ and Co3+ states in the glass matrix. The studies have further revealed that as the concentration of the CoO is increased, there is a gradual transformation of cobalt ions from tetrahedral to octahedral positions.  相似文献   

19.
Spectroscopic properties of Ce3+ and Pr3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu) have been investigated using VUV spectroscopy technique. Ce3+-doped samples show typical Ce3+ emission in the range of 325-450 nm. The strong host absorption band starting at around 160 nm indicates that the optical band gap of AREP2O7 hosts is at least 7.7 eV, and the host→Ce3+ energy transfer process is rather efficient. However, AREP2O7:Pr3+ samples show less efficient host→Pr3+ energy transfer. The direct Pr3+ 4f2→4f15d1 excitation, which are 12160±640 cm−1 higher respect to that of Ce3+, leads to strong 4f15d1→4f2 emission bands in the range of 230-325 nm but no obvious 4f2→4f2 emission lines.  相似文献   

20.
Nanocrystalline Y3Al5O12: Ce3+/Tb3+ (average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores (average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1–3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/Tb3+ particles show strong yellow-green and green emission corresponding to the 5d–4f emission of Ce3+ and 5D47F J (J = 6, 5, 4, 3) emission of Tb3+, respectively. These phosphors may have potential application in field emission displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号