首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jerzy Moc 《Molecular physics》2014,112(21):2781-2790
Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H?, exhibiting ‘stiffer’ potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the respective CCSD(T)/CBS thermodynamic EA values are 2.79 and 2.80 eV.  相似文献   

2.
The quantum chemistry of conformation equilibrium is a field where great accuracy (better than 100?cal?mol?1) is needed because the energy difference between molecular conformers rarely exceeds 1000–3000?cal?mol?1. The conformation equilibrium of straight-chain (normal) alkanes is of particular interest and importance for modern chemistry. In this paper, an extra error source for high-quality ab initio (first principles) and DFT calculations of the conformation equilibrium of normal alkanes, namely the intramolecular basis set superposition error (BSSE), is discussed. In contrast to out-of-plane vibrations in benzene molecules, diffuse functions on carbon and hydrogen atoms were found to greatly reduce the relative BSSE of n-alkanes. The corrections due to the intramolecular BSSE were found to be almost identical for the MP2, MP4, and CCSD(T) levels of theory. Their cancelation is expected when CCSD(T)/CBS (CBS, complete basis set) energies are evaluated by addition schemes. For larger normal alkanes (N?>?12), the magnitude of the BSSE correction was found to be up to three times larger than the relative stability of the conformer; in this case, the basis set superposition error led to a two orders of magnitude difference in conformer abundance. No error cancelation due to the basis set superposition was found. A comparison with amino acid, peptide, and protein data was provided.  相似文献   

3.
The kinetics of the O3, OH and NO3 radical reactions with diazomethane were studied in smog chamber experiments employing long-path FTIR and PTR-ToF-MS detection. The rate coefficients were determined to be k CH2NN+O3?=?(3.2?±?0.4)?×?10?17 and k CH2NN+OH?=?(1.68?±?0.12)?×?10?10 cm3 molecule?1 s?1 at 295?±?3?K and 1013?±?30 hPa, whereas the CH2NN?+?NO3 reaction was too fast to be determined in the static smog chamber experiments. Formaldehyde was the sole product observed in all the reactions. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ calculations showing the reactions to proceed exclusively via addition to the carbon atom. The atmospheric fate of diazomethane is discussed.  相似文献   

4.
ABSTRACT

The reaction of formic acid (HCOOH) with chlorine atom and amidogen radical (NH2) have been investigated using high level theoretical methods such BH&HLYP, MP2, QCISD, and CCSD(T) with the 6–311?+?G(2df,2p), aug-cc-pVTZ, aug-cc-pVQZ and extrapolation to CBS basis sets. The abstraction of the acidic and formyl hydrogen atoms of the acid by the two radicals has been considered, and the different reactions proceed either by a proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) mechanisms. Our calculated rate constant at 298?K for the reaction with Cl is 1.14?×?10?13?cm3?molecule?1?s?1 in good agreement with the experimental value 1.8?±?0.12/2.0?×?10?13?cm3?molecule?1?s?1 and the reaction proceeds exclusively by abstraction of the formyl hydrogen atom, via hat mechanism, producing HOCO+ClH. The calculated rate constant, at 298?K, for the reaction with NH2 is 1.71?×?10?15?cm3?molecule?1?s?1, and the reaction goes through the abstraction of the acidic hydrogen atom, via a pcet mechanism, leading to the formation of HCOO+NH3.  相似文献   

5.
We have studied the interaction of Al13-_{13}^{-} anion cluster with H2. Both the long range interaction and dissociative adsorption have been examined using the established correlated ab initio methods, MP2 and CCSD(T), in conjunction with the augmented correlation consistent basis sets up to aug-cc-pVTZ. The formation of the weakly bound (physisorbed) end-on anion complex Al13-_{13}^{-}...H2 is predicted for the interacting Al...H distances of 3.95 ? with the H-H axis pointing towards the ‘hollow’ site of Al13-_{13}^{-} and binding energy (De)D_{e}) of 0.7 kcal/mol at the estimated complete basis set (CBS) limit of CCSD(T). The barrier height for H2 dissociation on Al13-_{13}^{-} of 41.6 (42.9) kcal/mol calculated at the ZPVE-corrected CCSD(T)/aug-cc-pVTZ (estimated CCSD(T)/CBS) level is at least twice as large as that evaluated by us for a dissociative adsorption of H2 on an open-shell Al13 neutral cluster. To our knowledge, this report presents the first “benchmark” quality study of the physisorption and dissociative chemisorption of molecular hydrogen on Al13-_{13}^{-} anion cluster.  相似文献   

6.
Theoretical investigations are carried out on the title reactions by means of ab initio and DFT methods. The optimized geometries, frequencies and minimum energy path are obtained at MPWB1K/6-31+G(d,p) level. Single point energy calculations are performed at MP2 and QCISD(T) levels of theory. Energetics were further refined by calculating the energy of the species with a high level G2(MP2) method. The rate constant of the two reactions are calculated at 298?K and 1?atm using Canonical Transition State Theory (CTST) utilizing the ab initio data obtained during the present study. The rate constant values are found to be 5.5?×?10?14 and 5.9?×?10?14?cm3 molecule?1 s?1, respectively which are in good agreement with the experimental data.  相似文献   

7.
ABSTRACT

A coupled-cluster investigation of magnetic and electric properties of NF3, PF3 and AsF3 provides for a comparison with recent experimental data. For PF3, achieving reliable values for the magnetisability and rotational g-tensor of PF3 has been particularly challenging. We report the most accurate calculations to date for PF3; for the vibrationally corrected anisotropic magnetisability, our extrapolated CCSD(T)/CBS value of ?0.290 a.u is within the uncertainty limits of the most recent experimental value of ?0.286 ± 0.042 a.u. For the rotational g-tensor of PF3, agreement between theory and experiment for the g component is excellent (deviation of less than 0.0006 a.u.). However, the g|| component remains problematic even though our vibrationally corrected CCSD(T)/CBS value of ?0.0387 a.u is in closer agreement with the recently revised experimental value of ?0.0470 ± 0.0020 a.u. than the original value of ?0.0815 ± 0.0020 a.u. The origin of the remaining discrepancy remains unclear. Dipole and quadrupole moments have also been investigated.  相似文献   

8.
Pablo A. Denis 《Molecular physics》2013,111(21-23):2557-2567
The HSOH, H2SO and H2OS isomers have been investigated employing the CCSD(T) methodology and the cc-pV(X + d)Z X = 3,4,5,6 basis sets. The anharmonic force fields have been calculated to predict the fundamental vibrational frequencies, rotational constants, vibration–rotation corrections, anharmonic corrections to zero-point energies, and structural parameters. In addition to this, a spectroscopic characterization of the deuterated isomers D2SO and D2OS was performed. At the CCSD(T)/CBS limit and including corrections for scalar relativistic, spin orbit and core-valence correlation effects, the estimated enthalpies of formation are ?28.1 ± 1, ?12.3 ± 1, and 10.1 ± 1 kcal/mol for HSOH, H2SO and H2OS, respectively. Finally, we discuss the problems faced during the extrapolation to the CBS limit of the properties investigated.  相似文献   

9.
《Molecular physics》2012,110(19-20):2477-2491
Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3?kcal?mol?1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal?mol?1. Isomers involving highly-strained fused rings or long cumulenic chains provide a ‘torture test’ for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1?kcal?mol?1.  相似文献   

10.
Ab initio methods are applied to analyse the NMR shielding constants and spin-rotation constants in SiH4, PH3 and H2S molecules. The electron correlation effects are studied applying the MP2 and coupled cluster perturbation approaches. The basis set convergence is examined at the same time, and the final results for the equilibrium geometries are obtained at the CCSD(T)/cc-pCVQZ level. Zero-point vibrational and temperature contributions are computed at the SCF, MP2 and CCSD level of approximation. In addition, for the shielding constants we also estimate the relativistic effects, to determine total values of the shielding of the third-row nuclei in the studied molecules. Our final results for the shielding constants at 300?K are σ (29Si in SiH4)?=?482.35?ppm, σ (31P in PH3)?=?611.64?ppm and σ (33S in H2S)?=?736.13?ppm. These values, together with estimated corrections and error bars, can be used to determine absolute NMR shielding scales for the heavy nuclei.  相似文献   

11.
用从头算方法的MP2和CCSD(T)方法结合cc-pVTZ基组计算了二氯化锗同位素(70GeCl272GeCl276GeCl2)分子的平衡结构、光谱常数和非谐振力场.二氯化锗的几何结构、转动常数、振转相互作用常数、谐频、非谐振常数、四次和六次离心畸变常数、三次和四次力常数的计算结果与实验结果符合较好,二氯化锗分子的同位素效应较小,可能的原因是Ge同位素的质量变化相对较小.两种方法计算的结果均与实验结果符合,但CCSD(T)方法比MP2计算结果的偏差稍大一些,可能的原因是CCSD(T)方法在描述过共价Cl原子的电子相关时不够充分.  相似文献   

12.
Isomerization energies for hexenes (C6H12) were evaluated with ab initio (Hartree–Fock (HF), MP2, SCS‐MP2, and CCSD(T)) and several density functional approximation (DFA) methods. CCSD(T)/6‐311+G(2d,p) energies were taken as a benchmark standard. The HF method incorrectly predicts that monosubstituted alkenes are more stable than multiply‐substituted alkenes. DFAs generally predict the correct stability trends of alkenes (mono‐, < di‐, < tri‐, < tetra‐substituted alkenes) but errors in popular functionals, such as B3LYP, can be as large as errors found for alkane hydrocarbon thermochemistries. Some of the HF error is traced back to deficiencies in modeling 1,3‐geminal and 1,4‐vicinal alkyl–alkyl group interactions, called vinylbranches, and changes in C? C and C? H bond types (sp3–sp2 C? C to sp3–sp3 C? C and sp3 C? H to sp2 C? H). The latter is shown to be more significant. Comparison of CCSD(T) energies of trans‐2‐butene with 2‐methylpropylene and cis‐2‐butene suggests that geminal vinylbranches are stabilizing while vicinal vinylbranches are destabilizing. B3LYP and other DFAs have much smaller errors than HF theory due to inclusion of correlation energy that better reproduces bond type changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The intermolecular potential energy surface for C3–He complex has been constructed using supermolecular CCSD(T) and MP4 methods. The potential surfaces have been calculated for 27 values of R ranging from 2.8 to 8.0 Å and 19 values of θ equally spaced between 0° and 180°. Both CCSD(T) and MP4 potentials have similar global behaviors. The global minimum in each of the potentials corresponds to the slightly distorted T-shaped geometry. On the basis of these two potentials, the intermolecular vibrational energies and wavefunctions were calculated. The energy level pattern of the vdW vibrational states was predicted for C3–He complex. The zero point bending motion of this complex has a range of 180°. The calculated fundamental frequency of vdW bending is 3.16 cm?1 at CCSD(T) level, and 5.38 cm?1 at the MP4 level. In addition, we have also constructed the intermolecular potential energy surface with C3 bending coordinate of 160° by using supermolecular CCSD(T) method. Two local minima including arrow-shaped and Y-shaped configurations were determined. The rotational constants of three C3–He structures including T-shaped, arrow-shaped and Y-shaped configurations at CCSD(T) level were also reported.  相似文献   

14.
The gas‐phase elimination kinetics of the title compounds were carried out in a static reaction system and seasoned with allyl bromide. The working temperature and pressure ranges were 200–280 °C and 22–201.5 Torr, respectively. The reactions are homogeneous, unimolecular, and follow a first‐order rate law. These substrates produce isobutene and corresponding carbamic acid in the rate‐determining step. The unstable carbamic acid intermediate rapidly decarboxylates through a four‐membered cyclic transition state (TS) to give the corresponding organic nitrogen compound. The temperature dependence of the rate coefficients is expressed by the following Arrhenius equations: for tert‐butyl carbamate logk1 (s?1) = (13.02 ± 0.46) – (161.6 ± 4.7) kJ/mol(2.303 RT)?1, for tert‐butyl N‐hydroxycarbamate logk1 (s?1) = (12.52 ± 0.11) – (147.8 ± 1.1) kJ/mol(2.303 RT)?1, and for 1‐(tert‐butoxycarbonyl)‐imidazole logk1 (s?1) = (11.63 ± 0.21)–(134.9 ± 2.0) kJ/mol(2.303 RT)?1. Theoretical studies of these elimination were performed at Møller–Plesset MP2/6‐31G and DFT B3LYP/6‐31G(d), B3LYP/6‐31G(d,p) levels of theory. The calculated bond orders, NBO charges, and synchronicity (Sy) indicate that these reactions are concerted, slightly asynchronous, and proceed through a six‐membered cyclic TS type. Results for estimated kinetic and thermodynamic parameters are discussed in terms of the proposed reaction mechanism and TS structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

The atmospheric oxidation mechanisms of 1- and 2-propenol initiated by OH radical have been theoretically investigated at the CCSD(T)//BH&;HLYP/6-311?+?+G(d,p) level of theory. Conventional transition state theory was employed to predict the rate constants for the initial reaction channels. The calculations clearly indicate that OH-addition channels contribute maximum to the total reaction, both for 1- and 2-propenol, while H-abstraction channels can be neglected at the temperature range of 220–520?K. The calculated total rate constants at 298?K are 1.66?×?10?11 and 7.69?×?10?12 cm3?molecule?1?s?1 respectively for 1- and 2-propenol, which are in reasonable agreement with the experimental values of similar systems (vinyl ethers?+?OH reactions). The deduced Arrhenius expressions are k(OH?+?1-propenol)?=?1.43?×?10?12 exp[(743.7?K)/T] and k(OH?+?2-propenol)?=?2.86?×?10?12 exp[(310.5?K)/T] cm3?molecule?1?s?1. Under atmospheric condition, the OH-addition intermediates (CH3C?HCH(OH)2, CH3CH(OH)C?H(OH), CH3CH(OH)2?CH2, CH3?C(OH)CH2(OH)) are likely to react rapidly with O2, the theoretically identified major products for 1-propenol are HCOOH, CH3CHO and CH3CH(OH)CHO, and the dominant products for 2-propenol are CH3COOH, HCHO and CH3COCH2OH, both companied with the regeneration of OH and HO2 radicals (crucial reactive radicals in the atmosphere).  相似文献   

16.
It is well-known that many covalently bonded atoms of group VI have specific positive regions of electrostatic potential (σ-holes) through which they can interact with Lewis bases. This interaction is called ‘chalcogen bond’ by analogy with halogen bond and hydrogen bond. In this study, ab initio calculations are performed to predict and characterise chalcogen···π interactions in XHS···HCCH and XHSe···HCCH complexes, where X = F, Cl, Br, CN, OH, OCH3, NH2, CH3. For the complexes studied here, XHS(Se) and HCCH are treated as a Lewis acid and a Lewis base, respectively. The CCSD(T)/aug-cc-pVTZ interaction energies of this type of σ-hole bonding range from ?1.18 to ?4.83 kcal/mol. The calculated interaction energies tend to increase in magnitude with increasing positive electrostatic potential on the extension of X–S(Se) bond. The stability of chalcogen···π complexes is attributed mainly to electrostatic and correlation effects. The nature of chalcogen···π interactions is unveiled by means of the atoms in molecules, natural bond orbital, and electron localisation function analyses.  相似文献   

17.
The interaction within the methane–methane (CH4/CH4), perfluoromethane–perfluoromethane (CF4/CF4) methane–perfluoromethane dimers (CH4/CF4) was calculated using the Hartree–Fock (HF) method, multiple orders of Møller–Plesset perturbation theory [MP2, MP3, MP4(DQ), MP4(SDQ), MP4(SDTQ)], and coupled cluster theory [CCSD, CCSD(T)], as well as the PW91, B97D, and M06-2X density functional theory (DFT) functionals. The basis sets of Dunning and coworkers (aug-cc-pVxZ, x?=?D, T, Q), Krishnan and coworkers [6-311++G(d,p), 6-311++G(2d,2p)], and Tsuzuki and coworkers [aug(df, pd)-6-311G(d,p)] were used. Basis set superposition error (BSSE) was corrected via the counterpoise method in all cases. Interaction energies obtained with the MP2 method do not fit with the experimental finding that the methane–perfluoromethane system phase separates at 94.5?K. It was not until the CCSD(T) method was considered that the interaction energy of the methane–perfluoromethane dimer (?0.69?kcal?mol?1) was found to be intermediate between the methane (?0.51?kcal?mol?1) and perfluoromethane (?0.78?kcal?mol?1) dimers. This suggests that a perfluoromethane molecule interacts preferentially with another perfluoromethane (by about 0.09?kcal?mol?1) than with a methane molecule. At temperatures much lower than the CH4/CF4 critical solution temperature of 94.5?K, this energy difference becomes significant and leads perfluoromethane molecules to associate with themselves, forming a phase separation. The DFT functionals yielded erratic results for the three dimers. Further development of DFT is needed in order to model dispersion interactions in hydrocarbon/perfluorocarbon systems.  相似文献   

18.
Ab initio calculations at the B3LYP, MP2, MP4 and CCSD(T) levels of theory were performed to predict the stability of the halooxyhalocarbenes, XOCX (X = F, Cl). The calculations indicate that the nonlinear FOCF molecule is stable with an energy 16 kJ mol?1 below the energy of possible reacting fragments F2 and CO. However, a nonlinear equilibrium structure for ClOCCl was located, but it was found to be about 192 kJ mol?1 higher in energy than the energy of Cl2 and CO. The charge distribution in these molecules was analysed using the atoms in molecules (AIM) method.  相似文献   

19.
The Raman and infrared spectra (4000 to 50 cm–1) of the gas, liquid or solution, and solid have been recorded of n‐propylamine, CH3CH2CH2NH2. Variable temperature (−60 to −100 °C) studies of the Raman (1175 to 625 cm–1) and far infrared (600 to 10 cm–1) spectra dissolved in liquid xenon were carried out. From these data, the five possible conformers were identified and their relative stabilities obtained with enthalpy difference relative to trans–trans (Tt) for trans–gauche (Tg) of 79 ± 9 cm–1 (0.9 ± 0.1 kJ/mol); for Gg of 91 ± 26 cm–1 (1.08 ± 0.3 kJ/mol); for Gg′ of 135 ± 21 cm–1 (1.61 ± 0.2 kJ/mol); for Gt of 143 ± 11 cm–1 (1.71 ± 0.1 kJ/mol). The percentage of the five conformers is estimated to be 18% for the Tt, 24 ± 1% for Tg, 23 ± 3% for Gg, 18 ± 1% for Gg′ and 18 ± 1% for Gt at ambient temperature. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug‐cc‐pVTZ from both second‐order Møller–Plesset (MP2, full) and density functional theory calculations by the Becke, three‐parameter, Lee–Yang–Parr method. Vibrational assignments were provided for the observed bands for all five conformers, which are supported by MP2(full)/6‐31G(d) ab initio calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters were obtained from adjusted MP2(full)/6‐311+G(d,p) calculations. The results are discussed and compared with the corresponding properties of some related molecules. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The global minimum and transition states for the acceptor-tunnelling, donor-acceptor interchange and bifurcation tunnelling rearrangements of the water dimer, and the single-flip, bifurcation and concerted proton transfer processes in the water trimer have been reinvestigated. Our analysis of the tunnelling splittings and spectroscopy is based on ab initio calculations at the computational level of second-order M?ller-Plesset (MP2) theory with basis sets of aug-cc-pVXZ quality (X = D, T, Q for the dimer; X = D, T for the trimer). In both water dimer and trimer, the binding energy, barrier heights, intermonomer distances, and harmonic frequencies converge smoothly as the size of the basis set increases. In the water dimer, the binding energy was evaluated as 5.09kcal mol?1, while the activation energies are 0.52 (acceptor-tunnelling) 0.79 (donor-acceptor interchange), and 1.94 kcal mol?1 (bifurcation tunnelling) at the MP2/aug-cc-pVQZ level. In the water trimer, the binding energy was evaluated as 16.29 kcal mol?1, while the activation energies are 0.28 (single-flip), 2.34 (bifurcation), and 26.36 (proton transfer) kcal mol?1 at the MP2/aug-cc-pVTZ level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号