首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
J Vermesse  D Vidal 《Physica A》1977,86(2):429-447
The values of the shear viscosity of simple dense gases at room temperature up to 6000 bar, measured by the authors, have been compared to values calculated with statistical models: Lennard-Jones, Van-der-Waals and hard sphere dense fluids. The values from molecular dynamic modeling of Couette flow, for a Lennard-Jones system, along temperature) are in agreement with the experimental values of shear viscosity of helium and neon.With the hard sphere model the difference between the values calculated from the Kubo relation with the equilibrium molecular-dynamic calculations and experimental values for the noble gases has not the same representation according as the gas is at high or low reduced temperature. For this model some corrections have been calculated.  相似文献   

2.
The importance of aqueous mixtures as solvents has motivated the investigation of the usefulness of classical molecular dynamics simulation, using simple effective pair potentials and the Lorentz-Berthelot combining rules, to predict mixture viscosities and dielectric constants. In the acetonitrile-water system, near quantitative agreement with experiment is found; however, the calculated shear viscosity in the 2-propanol-water system is underpredicted by more than a factor of two. Moreover, the results do not appear to be strongly dependent on the mixture combining rules, as a 10% decrease in the unlike OO Lennard-Jones size parameter for this system had no discernable effect on the calculated viscosity. In both systems, the dielectric constant predictions were in qualitative accord with experiment, although systematically underpredicted as in the pure component models.  相似文献   

3.
A hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation is applied to the calculation of surface orientational structure and vibrational spectrum (second-order nonlinear susceptibility) at the vapor/water interface for the first time. The surface orientational structure of the QM water molecules is consistent with the previous MD studies, and the calculated susceptibility reproduces the experimentally reported one, supporting the previous results using the classical force field MD simulation. The present QM/MM MD simulation also demonstrates that the positive sign of the imaginary part of the second-order nonlinear susceptibility at the lower hydrogen bonding OH frequency region originates not from individual molecular orientational structure, but from cooperative electronic structure through the hydrogen bonding network.  相似文献   

4.
This paper proposes a simple model of transient networks of telechelic associating polymers for molecular simulations and reports the main results obtained by molecular dynamics on the rheological properties of the transient networks. The steady shear viscosity obtained by the non-equilibrium molecular dynamics simulation exhibits shear thickening at moderate shear rates and shear thinning at larger shear rates. The behavior is similar to that observed in experiments of telechelic associating polymers. By analyzing the distribution function of the end-to-end vector of bridge chains as a function of the shear rate, we find that shear thickening is mainly caused by the stress from the bridge chains highly stretched by shear flow. We also find that fracture of the transient network occurs in the shear-thinning regime at high shear rates.  相似文献   

5.
We study a model of concentrated suspensions under shear in two dimensions. Interactions between suspended particles are dominated by direct-contact viscoelastic forces and the particles are neutrally bouyant. The bimodal suspensions consist of a variable proportion between large and small droplets, with a fixed global suspended fraction. Going beyond the assumptions of the classical theory of Farris (R.J. Farris, Trans. Soc. Rheol. 12, 281 (1968)), we discuss a shear viscosity minimum, as a function of the small-to-large-particle ratio, in shear geometries imposed by external body forces and boundaries. Within a linear-response scheme, we find the dependence of the viscosity minimum on the imposed shear and the microscopic drop friction parameters. We also discuss the viscosity minimum under dynamically imposed shear applied by boundaries. We find a reduction of macroscopic viscosity with the increase of the microscopic friction parameters that is understood using a simple two-drop model. Our simulation results are qualitatively consistent with recent experiments in concentrated bimodal emulsions with a highly viscous or rigid suspended component. Received 28 June 2002 RID="a" ID="a"e-mail: ernesto@pion.ivic.ve  相似文献   

6.
A hybrid particle–continuum method is used to study the shear flow confined between two opposing walls, one of which is coated with polymer chains. Molecular dynamics (MD) is used in the particle region near the brush and Navier–Stokes (NS) equations are applied in the remaining region where the continuum assumption holds. The information exchange from the continuum region to the particle region is implemented using the constrained particle dynamics. Both Couette shear flow and oscillatory flow are considered in the present work. The effect of the shear flow on the conformational characteristics of polymer brushes is analyzed. In the overlap region, the velocities obtained from MD simulations are smoothly connected with those from NS equations. Our investigations demonstrate that the hybrid particle–continuum model is valid in exploring the shear behavior of polymer brushes.  相似文献   

7.
We discuss two methods for determining the shear viscosity of a fluid of particles with Yukawa interaction potential (a one‐component plasma). Both methods are based on computing the equilibrium dynamics using large‐scale molecular dynamics (MD) simulations. Our MD results illustrate that the hydrodynamic method for computing the shear viscosity is feasible and therefore complements the more widely used method based on the Green‐Kubo relation. We expect that in the future our shear viscosity calculations will be used to assist with the interpretation and analysis of x‐ray scattering experiments, which could in principle measure this fundamental dynamical quantity (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Multicomponent lattice-Boltzmann model with interparticle interaction   总被引:6,自引:0,他引:6  
A lattice Boltzmann model for simulating fluids with multiple components and interparticle forces proposed by Shan and Chen is described in detail. Macroscopic equations governing the motion of each component are derived by using the Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirment by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity, so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confiremoed numerically.  相似文献   

9.
A new handshake scheme is presented for tight-binding (TB) and molecular dynamics (MD) for multi-scale simulation of covalent crystals. In the present scheme, when calculating the forces on MD atoms in the handshake region, the TB atoms in close proximity to the MD atoms are treated as MD atoms. The scheme is thus seamless for calculation of MD atoms. When determining the electronic states of the TB subsystem, instead of the four basic atomic orbitals, hybrid orbitals are employed as bases in TB method and also as representing the action of MD atoms on TB atoms. The present handshaking methodology has several advantages. Firstly, it avoids determining the physical parameters required by introducing a new orbital model. Secondly, the “seam” almost decreases by one order of magnitude compared to that of Silogen model. Thirdly, the whole scheme is stable for dynamic simulation.  相似文献   

10.
11.
12.
The effect of membrane viscosity on the dynamics of vesicles in shear flow is studied. We present a new simulation technique, which combines three-dimensional multiparticle collision dynamics for the solvent with a dynamically triangulated membrane model. Vesicles are found to transit from steady tank treading to unsteady tumbling motion with increasing membrane viscosity. Depending on the reduced volume and membrane viscosity, shear can induce both discocyte-to-prolate and prolate-to-discocyte transformations. This behavior can be understood from a simplified model.  相似文献   

13.
ABSTRACT

We investigate the dependence of the shear viscosity of suspensions of spherical colloids as a function of the volume fraction of the suspension, the colloid–colloid interactions and the shear rate. We couple molecular dynamics to describe the motion of the colloids with stochastic rotation dynamics (MD–SRD) for the fluid environment by means of stochastic collisions, in order to incorporate hydrodynamics effects leading to non-newtonian responses. The shear viscosity is computed using non-equilibrium simulations by imposing explicit velocity gradients. The impact of the colloid–colloid interactions is examined by modelling the inter-colloid pair potential with a repulsive power law, that allows interpolating different degrees of colloidal softness. The general rheological behaviour of our suspensions can be described with a Krieger–Dougherty like equation, which must be corrected to account for the variations in the maximum packing fraction and non-equilibrium effects arising from the flux of momentum imposed to the suspension, which appear when varying the softness of the inter-colloidal interactions. We further show evidence for non-newtonian behaviour at high Péclet numbers, characterised both by shear thinning and shear thickening, and thus demonstrate these effects can be successfully captured using MD–SRD methods.  相似文献   

14.
Y. Cui 《哲学杂志》2013,93(33):3142-3171
Abstract

Molecular dynamics (MD) simulations under different mechanical and thermal constraints are carried out with a nanovoid embedded inside a single-crystal, face-centred-cubic copper. The dislocation emission angles measured from MD plots under 0.1 K, uniaxial-strain simulation are in line with the theoretical model. The dislocation density calculated from simulation is qualitatively consistent with the experimental measurement in terms of a saturation feature. The ‘relatively farthest-travelled’ atoms are employed to reflect the correlation between the dislocation structure and the void growth. At a smaller scale, the incomplete shear dislocation loops on the slip plane contribute to the local material transport. At a larger scale, the dislocation structures formed by those incomplete shear loops further facilitate the growth of nanovoid. Compared to the uniaxial-strain case, the void growth under the uniaxial-stress is very limited. The uniaxial-strain loading results in an octahedron void shape. The uniaxial-stress loading turns the nanovoid into a prolate ellipsoid along the loading direction. In the simulation, the largest specimen contains 12 million atoms and the lowest strain rate applied is 2 × 106 s?1. Under all the different thermomechanical constraints concerned, the formation of incomplete shear dislocation loops are found capable of growing the void.  相似文献   

15.
The flow equations for melts submitted to conditions of Rheo-Fluidification processing described in Part 1 are determined and solved numerically. The pressure flow from an extruder feed end and drag flow from the modulated rotation of the rotor, i.e., under extrusion conditions with both cross-rotational and oscillatory flow, are combined. The value of pressure, shear stress, and viscosity along the flow path of the melt (a helicoidal motion around a divergent conic surface), for a given throughput and temperature, as the melt is moved through an annular gap of constant thickness are calculated. The simulation is restricted to the simpler case of low throughput where elongational flow can be assumed to be negligible and shear dominates the viscosity expression. The classic lubrication approximation hypothesis applied to a power law fluid is used. This assumption appears justified because of the geometry of the die, which consists of a thin annulus of 2 mm extended over a die length of 570 mm (see Part 1). The viscosity is expressed as a function of strain rate, which is calculated from the contribution of pressure flow, rotational flow, and superposed oscillation. The combined shear rate is calculated assuming a vectorial combination of the individual shear rates, following Cogswell who verified this hypothesis, and according to our own validation of this assumption on the same polymer, using a Couette without vibration.  相似文献   

16.
New calculations have been made of the self-diffusion coefficient D, the shear viscosity ηs, the bulk viscosity ηb and thermal conductivity λ of the hard sphere fluid, using molecular dynamics (MD) computer simulation. A newly developed hard sphere MD scheme was used to model the hard sphere fluid over a wide range up to the glass transition (~0.57 packing fraction). System sizes of up to 32 000 hard spheres were considered. This set of transport coefficient data was combined with others taken from the literature to test a number of previously proposed analytical formulae for these quantities together with some new ones given here. Only the self-diffusion coefficient showed any substantial N dependence for N < 500 at equilibrium fluid densities (ε 0.494). D increased with N, especially at intermediate densities in the range ε ~ 0.3–0.35. The expression for the packing fraction dependence of D proposed by Speedy, R. J., 1987, Molec. Phys., 62, 509 was shown to fit these data well for N ~ 500 particle systems. We found that the packing fraction ε dependence of the two viscosities and thermal conductivity, generically denoted by X, were represented well by the simple formula X/X 0 = 1/[1 ? (ε/ε1)]m within the equilibrium fluid range 0 > ε > 0.493. This formula has two disposable parameters, ε and m, and X 0 is the value of the property X in the limit of zero density. This expression has the same form as the Krieger-Dougherty formula (Kreiger, I. M., 1972, Adv. Colloid. Interface Sci., 3, 111) which is used widely in the colloid literature to represent the packing fraction dependence of the Newtonian shear viscosity of monodisperse colloidal near-hard spheres. Of course, in the present case, X o was the dilute gas transport coefficient of the pure liquid rather than the solvent viscosity. It was not possible to fit the transport coefficient normalized by their Enskog values with such a simple expression because these ratios are typically of order unity until quite high packing fractions and then diverge rapidly at higher values over a relatively narrow density range. At the maximum equilibrium fluid packing fraction ε = 0.494 for both the hard sphere fluid and the corresponding colloidal case a very similar value was found for ηso ?30–40, suggesting that the ‘crowding’ effects and their consequences for the dynamics in this region of the phase diagram in the two types of liquid have much in common. For the hard sphere by MD, Do/D ~ 11 at the same packing fraction, possibly indicating the contribution from ‘hydrodynamic enhancement’ of this transport coefficient, which is largely absent for the shear viscosity. Interestingly the comparable ratio for hard sphere colloids is the same.  相似文献   

17.
Molecular dynamics (MD) simulations are used to investigate the response of a/2<111> screw dislocation in iron submitted to pure shear strain. The dislocation glides and remains in a (110) plane; the motion occurs exclusively through the nucleation and propagation of double kinks. The critical stress is calculated as a function of the temperature. A new method is developed and used to determine the activation energy of the double kink mechanism from MD simulations. It is shown that the differences between experimental and simulation conditions lead to a significant difference in activation energy. These differences are explained, and the method developed provides the link between MD and mesoscopic simulations.  相似文献   

18.
冲击加载下孔洞贯通的微观机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用分子动力学方法计算模拟了沿〈100〉晶向冲击加载下单晶铜中双孔洞的贯通过程.发现孔洞周围发射剪切型位错环是孔洞塌缩和增长的原因.在拉伸阶段,孔洞首先分别独立增长,随后其周围塑性变形区开始交叠和相互作用,最后两个孔洞开始直接贯通.这种贯通模式和实验对延性材料中孔洞贯通过程的显微观察结果一致.对四种不同θ值(θ为两个孔洞中心连线与冲击加载方向之间的夹角)的模型分别进行了计算模拟,发现在相同的冲击加载强度下,θ=0°和θ=30°的孔洞之间没有相互贯通; 关键词: 纳米孔洞 分子动力学 冲击加载 贯通  相似文献   

19.
For a large region of dense fluid states of a Lennard-Jones system, we have calculated the friction coefficient by the force autocorrelation function of a Brownian-type particle by molecular dynamics (MD). The time integral over the force autocorrelation function showed an interesting behavior and the expected plateau value when the mass of the Brownian particle was chosen to be about a factor of 100 larger than the mass of the fluid particle. Sufficient agreement was found for the friction coefficient calculated by this way and that obtained by MD calculations of the self-diffusion coefficient using the common relation between these coefficients. Furthermore, a modified friction coefficient was determined by integration of the force autocorrelation function up to the first maximum. This coefficient can successfully be used to derive a reasonable soft part of the friction coefficient necessary for the Rice-Allnatt approximation for the shear viscosity of simple liquids.  相似文献   

20.
Yitzhak Rabin  Igor Hersht 《Physica A》1993,200(1-4):708-712
When shear flow is generated in molecularly thin liquid films of simple liquids confined between two parallel plates, the effective viscosity of the liquid increases by many orders of magnitude compared to its bulk value. Non-Newtonian effects such as shear thinning with a universal power law exponent of are observed in experiments and computer simulations. We present a simple model of these phenomena based on shear melting of solid-like layers induced by the strong coupling with the crystalline walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号