首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-resolution vibration-rotation overtone spectrum of H13C12CH has been recorded with a Fourier transform infrared spectrometer in the wavenumber region 6400 to 6700 cm−1. The main band, assigned as the C-H stretching combination band ν13, and some overtone and hot bands have been rotationally analyzed. Altogether eight parallel bands have been observed. The vibrational labels have been deduced on the basis of the assignments of the fundamental ν3 antisymmetric C-H stretching band system.  相似文献   

2.
The binary and ternary cyanide adducts of the ferric horseradish peroxidase were investigated by Fourier transform infrared spectroscopy. The carbon-nitrogen bond of the bound cyanide ion in the binary ferric cyanohorseradish peroxidase exhibits two stretching vibrations at 2130 cm?1 and 2127 cm?1 with the latter mode being observed in this work for the first time. This finding supports the results of the resonance Raman study of cyanohorseradish peroxidase, which identified two iron-carbon-nitrogen bending vibrations and two iron-carbon stretching vibrations, proving the existence of two conformational states. The identification of the latter carbon-nitrogen stretching frequency allowed the assignment of all of the vibrational modes of the iron-carbon-nitrogen groups of the two conformational states of the ferric cyanohorseradish peroxidase. The first conformer is characterized by a carbon-nitrogen stretch at 2130 cm?1, an iron-carbon stretch at 453 cm?1, and an iron-carbon-nitrogen bending mode at 405 cm?1. The second state has a carbon-nitrogen stretch at 2127 cm?1, an iron-carbon stretch at 360 cm?1, and an iron-carbon-nitrogen bending mode at 422 cm?1. The iron-carbon stretching band is weakly sensitive to pH changes, but it is sensitive to H2O/D2O substitution, indicating that the bound cyanide ion in cyanohorseradish peroxidase is hydrogen bonded to the surrounding protein. The two states were attributed to variation in the extent of hydrogen bonding of the iron-carbon-nitrogen groups in the two states. The carbon-nitrogen stretching vibrations of the ternary complexes of cyanohorseradish peroxidase with ferulic acid, benzamide, and benzhydroxamic acid have been investigated for the first time. The binding of the substrate to cyanohorseradish peroxidase does not always lead to the vanishing of one of the conformational states as in the carbon monoxide adducts of the ferrous horseradish peroxidase, but can cause shifts in the νC-N frequency and in the relative population of both conformational states.  相似文献   

3.
Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral trimethylamine dimer were measured in the 2500-3800 cm-1 region. Quantum chemical calculations were performed to identify the structure of the low-lying isomers and to assign the observed spectral features. The bands at 2975 and 2949 cm-1 were assigned to the antisymmetric C-H stretching and the band at 2823 cm-1 to the symmetric C-H stretching, respectively. The 2739 cm-1 band was due to the CH3 bending overtone, which disappeared at low IR laser power of 1 mJ/mm2. The extra band at 2773 cm-1 could be due to Fermi resonance behavior of the light isotopologue, these are often close in energy and can strongly mix through cubic terms in the potential function. Experimental and theoretical results indicate the likely coexistence of multiple structures. The peak widths of IR spectra of neutral trimethylamine dimer are not significantly affected by the structural transformation, allowing the stretching modes to be well resolved.  相似文献   

4.
在2000 ~ 9000 波数 、 12000 ~12900 波数的光谱区间记录了室温下H2SiCl2气体分子的振动泛频光谱,所用的仪器分别是高分辨傅立叶变换光谱仪和高灵敏激光腔内吸收光谱仪。用局域模模型和包含达林-丹尼生共振的简正模模型,归属了SiH伸缩振动的基频和泛频,振动量子数的改变△VSiH=1, 2, 3, 4 and 6。通过对实验能级的非线性拟合,得到SiH伸缩振动的谐振频率ωm、非谐性常数χm、键间耦合系数λ、莫尔斯振子参数 De、α 和相互作用力常数 。实验发现,随着振动能量的增加,振动簇(manifold,两个SiH键的伸缩振动量子数m+n=常数 )中能量最低的两个能级的间距逐渐减小。当△VSiH≥4时,在实验误差范围内这两个最低的振动态能级简并。这种简并的能级结构类似双原子莫尔斯振子,符合Birge-Sponer 关系。双原子莫尔斯振子直接描述了H2SiCl2分子中SiH 的高泛频伸缩振动,表明在高振动情况下振动能量已经集中到单个SiH键上。  相似文献   

5.
The temperature dependence of the bending ν2, combination ν2 + ν L , and stretching (ν1, ν3, 2ν2) absorption bands in the infrared spectra of supercooled water with a temperature-change step Δt from 2 to 2.5°C was studied using an advanced infrared Fourier spectrometer. It was found that the frequency of the maximum of the stretching absorption band (2700–3700 cm?1) decreases with the reduction of the water temperature from ?0.5 to ?5.0°C. The frequency of the maximum of the combination absorption band (2130 cm?1) increases with the reduction of the water temperature in a range from ?3.0 to ?5.0°C. The frequency of the maximum of the absorption band of bending oscillation (1640 cm?1) is invariable with a reduction of the water temperature from ?0.5 to ?5.0°C.  相似文献   

6.
The nν1 SiH stretching overtone transitions of trideuterosilane, HSiD3, have been recorded by Fourier transform spectroscopy (n=3 and 4) and by intracavity laser absorption spectroscopy (n=5 and 6). The unusually weak 3ν1 band is affected by considerable intensity and energy perturbations. The 4ν1 band is also strongly perturbed but the interaction with the dark states is more limited and part of the rotational structure of the v1=4 upper state could be satisfactorily modeled. Less pronounced perturbations affect the v1=5 level, newly detected by ICLAS. Its rotational structure is locally perturbed by anharmonic coupling with an unidentified vibrational dark state. The global modeling of the interacting dyad allowed the determination of the perturber parameters and the assignment of extra lines due to an intensity transfer from the v1=5 bright state to the dark state. In agreement with a previous ICLAS study, the 6ν1 band near 12 113 cm−1 was found free of perturbation. About six hundred line positions could be reproduced with an rms of 4.6×10−3 cm−1, leading to a significantly improved set of rovibrational parameters. The striking evolution of the rotational structure, which exhibits fewer and fewer perturbations when the SiH excitation increases, is discussed.  相似文献   

7.
The vibrational modes of parachlorobenzaldehyde are assigned using infrared and Raman spectra, valence force field calculations of normal coordinates, and deuteration effects. Low temperature and isotopic studies show that the band at 310 cm?1 previously observed as a single band is a closely spaced doublet. One component is assigned as the out-of-plane CCl wagging mode, the other as a mixed CClCHO in-plane bending deformation. A feature of the spectra in all the isotopic parachlorobenzaldehydes is an intense doublet in the 1700 cm?1 region interpreted as Fermi resonance between a combination band and the carbonyl stretching mode.  相似文献   

8.
Raman spectroscopy at both 298 and 77 K has been used to study a series of selected natural smithsonites from different origins. An intense sharp band at 1092 cm−1 is assigned to the CO32− symmetric stretching vibration. Impurities of hydrozincite are identified by a band around 1060 cm−1. An additional band at 1088 cm−1 which is observed in the 298 K spectra but not in the 77 K spectra is attributed to a CO32− hot band. Raman spectra of smithsonite show a single band in the 1405–1409 cm−1 range assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional bands for the ν3g modes for some smithsonites is significant in that it shows distortion of the ZnO6 octahedron. No ν2 bending modes are observed for smithsonite. A single band at 730 cm−1 is assigned to the ν4 in phase bending mode. Multiple bands be attributed to the structural distortion are observed for the carbonate ν4 in phase bending modes in the Raman spectrum of hydrozincite with bands at 733, 707 and 636 cm−1. An intense band at 304 cm−1 is attributed to the ZnO symmetric stretching vibration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The infrared spectrum of 13C2HD has been investigated using high-resolution Fourier transform infrared spectroscopy. A large number of ro-vibrational transitions in the spectral region 1000–6600?cm?1 have been recorded and assigned. This paper is focused only on the vibrational bands involving pure stretching, stretching–bending or stretching–stretching modes. In total, 78 bands have been identified and assigned, 29 related to υ1(CH stretch), 27 to υ2(CC stretch), and 22 to υ3(CD stretch). The data pertaining to each stretching mode have been fitted simultaneously in order to obtain accurate sets of rotational and vibrational parameters for the excited states.  相似文献   

10.
侯喜文  谢汨  马中骐 《物理学报》1997,46(6):1073-1078
用局域模模型来解释甲烷的伸展和弯曲振动能谱,其中伸展振动和弯曲振动间的相互作用用费密共振项来描写,它由一个伸展振子的玻色产生(或湮没)算子和两个弯曲振子的玻色湮没(或产生)算子乘积的Td不变组合构成.这模型包含10个参数,与已发表的甲烷振动能谱的实验数据比较,得到能量的方均根偏差为12.38cm-1关键词:  相似文献   

11.
Biodegradable solid polymer electrolyte (SPE) is prepared by solution-casting technique using low-cost cellulose derivative, hydroxypropylmethyl cellulose (HPMC) as a host polymer. Owing to the hydrophobic nature of this polymer, it is predicted to exhibit low ionic conductivity upon addition of magnesium trifluoromethanesulfonate (MgTf2) salt. Therefore, ionic liquid (IL), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMTf), is added in order to enhance its ionic conductivity. Based on the findings, the ionic conductivity at room temperature and the dielectric behaviors of the SPE complex improved upon incorporation of 40 wt.% IL. On top of that, addition of IL reduces the degree of crystallinity and the glass transition temperature (T g ) of the SPE. The conductivity-temperature plot revealed that the transportation of ions in these films obey Arrhenius theory. The interaction between SPE complex, MgTf2 salt, and BMIMTf is investigated by means of Fourier transform infrared (FTIR) spectroscopy through the change in peak intensity around 3413, 1570, and 1060 cm?1, which are responsible for –OH stretching band, C–C and C–N bending modes of cyclic BMIM+, and C–O–C stretching band, respectively.  相似文献   

12.
Abstract

The Fourier transform (FT) infrared and Raman spectra of newberyite, MgHPH4 - 3H2O are studied in the region where the stretching vibrations of the water molecules (protiated and deuterated) and the O-H/O-D stretches of the hydrogenphosphate anions are expected to appear. The O-H stretching vibrations give rise to a complex feature known as the A,B,C trio. Since neither of the maxima found below 3000 cm?1 represents a true band arising from a given fundamental, it is pointless to correlate their frequencies with the observed O…O distances. In the water stretching region, the two bands with highest frequencies undoubtedly correspond to the anti symmetric and symmetric stretch of one type of the water molecules. The stretching vibrations of one of the remaining two types of H2O molecules are clearly uncoupled and the O-H oscillator involved in the weaker hydrogen bond is responsible for a band at 3376 cm?1 whereas the rest of the water stretchings are apparently overlapped yielding the complex band below 3320 cm?1. Thus the situation is again complicated and the correlations between the frequencies and the Ow…O distances are inappropriate. The two bands at highest frequencies (3522 and 3483 cm?1 at RT) exhibit a positive temperature coefficient.

  相似文献   

13.
The S3 radical anion is observed in several systems: non‐aqueous polysulfides solutions, doped alkali halides, ultramarine pigments (UP) for which S3 is the blue chromophore and S2 is the yellow one and pigments of zeolite 4A structure. The S3 ion has C2V symmetry, and therefore its three vibrational modes should be observed in the Raman and in IR spectra. In resonance Raman spectroscopy, only the symmetric stretching mode ν1 and the bending mode ν2 have been observed, whereas the anti‐symmetric stretching mode ν3 has never been observed whatever the system. In this work, we confirm that ν3 is not observed in solutions with resonance Raman spectroscopy. However, our investigation of several blue UP, with various concentrations of S2, shows that there is a superposition of two bands at ca 590 cm−1: the first is assigned to ν (S2) and the second to ν3 (S3). With the 457.9 nm excitation line, for which the resonance conditions are simultaneously fulfilled for S2 and S3, the band at ca 590 cm−1 is the sum of the contributions of both ν (S2) and ν3 (S3) vibrations, while, with the 647.1 nm line, which only satisfies the resonance conditions of S3, the band at ca 584 cm−1 must be assigned only to ν3 (S3). Furthermore, ν3 (S3) is observed in green UP and in pigments of zeolite structure. The ν3 vibration of S3, which is observed neither in polysulfide solutions nor in doped alkali halides in resonance Raman conditions, can therefore be observed when this species is inserted into the β‐cages of the sodalite or of the zeolite 4A structures. So, the band at ca 590 cm−1 cannot always be assigned to S2 in these systems. This implies that the concentration of S2 in UP must be reconsidered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Raman spectroscopy, complemented by infrared spectroscopy, has been used to characterise the ferroaxinite minerals of the theoretical formula Ca2Fe2+Al2BSi4O15(OH), a ferrous aluminium borosilicate. The Raman spectra are complex but are subdivided into sections on the basis of the vibrating units. The Raman spectra are interpreted in terms of the addition of borate and silicate spectra. Three characteristic bands of ferroaxinite are observed at 1082, 1056 and 1025 cm−1 and are attributed to BO4 stretching vibrations. Bands at 1003, 991, 980 and 963 cm−1 are assigned to SiO4 stretching vibrations. Bands are found in these positions for each of the ferroaxinites studied. No Raman bands were found above 1100 cm−1 showing that ferroaxinites contain only tetrahedral boron. The hydroxyl stretching region of ferroaxinites is characterised by a single Raman band between 3368 and 3376 cm−1, the position of which is sample‐dependent. Bands for ferroaxinite at 678, 643, 618, 609, 588, 572, 546 cm−1 may be attributed to the ν4 bending modes and the three bands at 484, 444 and 428 cm−1 may be attributed to the ν2 bending modes of the (SiO4)2−. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Ab initio CI potential energy (PES) and dipole moment (DMS) surfaces have been calculated with singles and doubles excitation configuration interaction (SDCI) for the 2-dimensional isolated sp2 CH chromophore subspace of trideuteroacetaldehyde (CD3CHO). Different extrapolation schemes to full-CI have been applied after the extrapolation to full-SDCI. Vibrational band centres and absolute intensities are determined variationally on six extrapolated surfaces. The band centres are analysed within the effective Hamiltonian model for isolated CH chromophores and the effective spectroscopic parameters are compared for the different extrapolation schemes. Time dependent population evolution for vibrational quantum motion with a pure CH stretching state being initially populated is calculated for some of the extrapolated surfaces within the effective Hamiltonian model.  相似文献   

16.
The spectrum of the ν1 and ν4 SiH stretching bands of 28SiH3D have been recorded and analyzed. The degenerate stretching mode is at 2188.504 cm?1, only 1.103 cm?1 above the symmetric stretching mode. Several accidental and essential resonances affect these bands but all have been successfully analyzed by diagnolization of the secular determinant complete through the second order of the transformed Hamiltonian. One accidental resonance leads to a number of forbidden transitions through which a value of the rotational constant A0 has been obtained.  相似文献   

17.
ABSTRACT

Lüneburgite, a rare magnesium borate-phosphate mineral from Mejillones, Chile, has been characterized using Raman and mid-infrared spectroscopy methods. Boron tetrahedra are characterized by sharp Raman band at 877?cm?1, attributed to the ν1[BO4]5? symmetric stretching mode. The phosphate anion is associated with a distinct band at 1032?cm?1, attributed to the ν3[PO4]3? antisymmetric stretching mode. The most intensive Raman band at 734?cm?1 is ascribed to stretching vibrations of bridging oxygen atoms in boron–oxygen–phosphor bridges. Bonds associated with water bending mode and stretching vibration are observed at 1661?cm?1 (infrared) and in the 3000–3500?cm?1 region (Raman and infrared spectrum).  相似文献   

18.
Solid‐state protonated and N,O‐deuterated Fourier transform infrared (IR) and Raman scattering spectra together with the protonated and deuterated Raman spectra in aqueous solution of the cyclic di‐amino acid peptide cyclo(L ‐Asp‐L ‐Asp) are reported. Vibrational band assignments have been made on the basis of comparisons with previously cited literature values for diketopiperazine (DKP) derivatives and normal coordinate analyses for both the protonated and deuterated species based upon DFT calculations at the B3‐LYP/cc‐pVDZ level of the isolated molecule in the gas phase. The calculated minimum energy structure for cyclo(L ‐Asp‐L ‐Asp), assuming C2 symmetry, predicts a boat conformation for the DKP ring with both the two L ‐aspartyl side chains being folded slightly above the ring. The CO stretching vibrations have been assigned for the side‐chain carboxylic acid group (e.g. at 1693 and 1670 cm−1 in the Raman spectrum) and the cis amide I bands (e.g. at 1660 cm−1 in the Raman spectrum). The presence of two bands for the carboxylic acid CO stretching modes in the solid‐state Raman spectrum can be accounted for by factor group splitting of the two nonequivalent molecules in a crystallographic unit cell. The cis amide II band is observed at 1489 cm−1 in the solid‐state Raman spectrum, which is in agreement with results for cyclic di‐amino acid peptide molecules examined previously in the solid state, where the DKP ring adopts a boat conformation. Additionally, it also appears that as the molecular mass of the substituent on the Cα atom is increased, the amide II band wavenumber decreases to below 1500 cm−1; this may be a consequence of increased strain on the DKP ring. The cis amide II Raman band is characterized by its relatively small deuterium shift (29 cm−1), which indicates that this band has a smaller N H bending contribution than the trans amide II vibrational band observed for linear peptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The Fourier transform infrared spectrum of the υ 3 and υ 9 bands of methylene fluoride-d 2 (CD2F2) has been recorded with an unapodized resolution of 0.0024cm-1 in the frequency range 970-1080cm-1. These two bands with band centres approximately 26 cm-1 apart were mutually coupled by Coriolis interactions. By fitting a total of 1639 infrared transitions of both υ 3 and υ 9 with a standard deviation of 0.00084cm-1 S/S using a Watson's A-reduced Hamiltonian in the I r representation with the inclusion of a first order c-type Coriolis resonance term, two sets of rovibrational constants for υ 3 = 1 and υ 9 = 1 states were derived. The υ 3 band is B-type while the υ9 band is A-type with band centres at 1030.1573 ± 0.0003 and 1003.7435 ± 0.0001cm-1, respectively.  相似文献   

20.
Raman spectroscopy complemented with infrared spectroscopy has been used to study a series of selected natural halogenated carbonates from different origins, including bastnasite, parisite and northupite. The position of CO32− symmetric stretching vibration varies with the mineral composition. An additional band for northupite at 1107 cm−1 is observed. Raman spectra of bastnasite, parisite and northupite show single bands at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− asymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the CaO6 octahedron. No ν2 Raman bending modes are observed for these minerals. The band is observed in the infrared spectra, and multiple ν2 modes at 844 and 867 cm−1 are observed for parisite. A single intense infrared band is found at 879 cm−1 for northupite. Raman bands are observed forthe carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for selected bastansites and parisites, indicating the presence of water and OH units in the mineral structure. The presence of such bands brings into question the actual formula of these halogenated carbonate minerals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号