首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By employing ab initio quantum chemistry method, we investigate the feasibility of laser cooling InF molecule. Four low-lying electronic states (X1Σ+, C1Π, 3Π and 23Π) of InF have been calculated using the multi-reference configuration interaction (MRCI) method. The spin-orbit coupling effects are also taken into account in the electronic structure computation at the MRCI level. The highly diagonal Franck-Condon factors for C1Π → X1Σ+ transitions are estimated. The radiative lifetime of the C1Π (v′ = 0) state is about 2.22 ns, which is found to be enough short for rapid laser cooling. Though the cooling wavelength of InF is located in the short-wavelength ultraviolet light (UVC), a frequency quadrupled Ti: sapphire laser (189–235 nm) could be capable of generating laser transition wavelength of InF. Furthermore, the C1Π → X1Σ+ transitions perhaps can be followed by the B3Π1 → X1Σ+0+ transitions to attain a lower Doppler temperature. Meanwhile, for achieving quasi-closed transition cycle of InF molecule, we investigate the hyperfine structure of the lowest state X1Σ+. Overall, the present results indicate the possibility of laser cooling InF molecules.  相似文献   

2.
ABSTRACT

The feasibility of laser cooling the 138Ba19F molecule is performed using ab initio quantum chemistry. Three low-lying doublet electronic states X 2Σ+, A' 2Δ and A 2Π are determined by the multireference configuration-interaction (MRCI) method, where the spin–orbit coupling (SOC) effect is also taken into account in the electronic structure calculations. The computed spectroscopic constants and permanent dipole moments agree well with the available experimental data. The Franck–Condon factors of the A 2П → X 2Σ+ transition show highly diagonal dominance (f00 = 0.981, f11 = 0.940, f22 = 0.896) and the A 2П state has a radiative lifetime of τ = 37.8 ns, allowing for rapid laser cooling. Our calculation indicates that the laser-cooling scheme require only three lasers at 822 nm, 855 nm and 856 nm proceeded on the A 2П (ν′) ← X 2Σ+ (ν′′) transitions. The appeared intervening state A' 2Δ between the X 2Σ+ and A 2П states is the main challenge for laser cooling this molecule. In fact, the calculated vibrational branching loss ratio to the intermediate A' 2Δ state is almost negligible at a level of η < 4.5 × 10?9. Thus, BaF is a promising laser-cooling candidate with a relatively simple laser-cooling scheme.  相似文献   

3.
The potential energy curves (PECs) were calculated for the 27 Λ-S states and 73 Ω states of PO radical. The calculations were done using the CASSCF method, which was followed by the internally contracted multireference configuration interaction (icMRCI) approach. To improve the quality of PECs, core-valence correlation and scalar relativistic corrections as well as Davidson correction were included. Of the 27 Λ-S states, the 16Σ+ state was repulsive at any case. The 14Φ and 16Π states were bound, but they became repulsive with the spin-orbit coupling (SOC) effect accounted for. The 34Σ+, a4Π, C′2Δ, D′2Π, 14Δ, 12Φ, 16Σ+ and 16Π states were inverted with the SOC effect included. The F2Σ+ state had double wells. The avoided crossings existed between the B2Σ+ and F2Σ+ states, the F2Σ+ and 32Σ+ states, the C′2Δ and 22Δ states, the 14Δ and 24Δ states, the 24Δ and 34Δ states, the 24Π and 34Π states and the 34Π and 44Π states. The c4Σ+, 24Σ+, 34Σ+, 34Π, 44Π, 54Π, 34Δ, 14Φ and 16Π states were weakly bound, which well depths were within several hundred cm?1. The spectroscopic parameters were derived. The SOC effect on the spectroscopic properties was evaluated. The spectroscopic results obtained here could be expected to be reliably predicted ones.  相似文献   

4.
The potential energy curves of the low-lying electronic states of BeH+ molecular ion are performed by using highly accurate multi-reference configuration interaction with AV5Z basis sets for H atom and ACV5Z basis set for Be atom, 1s inner shell of Be is considered as the core orbit and the active orbit, respectively, which are used to characterise the spectroscopic properties of a manifold of singlet and triplet states. Fourteen electronic states correlated with eight dissociation channels are investigated, we have found that the a3Σ+ and c3Σ+ both are bound states, the 33Σ+ possesses double wells, and the C1Σ+, 33Σ+, 23Π, 21Π, 11Δ, 13Δ, 23Δ and 21Δ states are studied for the first time. Transition dipole moment, Franck–Condon factors qυ′υ and Einstein coefficients Aυ′υ for A1Σ+–X1Σ+, 21Π–B1Π, c3Σ+–a3Σ+ and b3Π–a3Σ+ systems have been calculated. Radiative lifetime of A1Σ+–X1Σ+ band system has also been determined.  相似文献   

5.
Laser cooling of a molecule with heavy nuclei is often complicated because of the density distribution of the electronic states. Here, we evaluate the feasibility of the laser cooling of the SrI molecule by calculating the potential energy curves and transition dipole moments of the ground and low-lying excited states using the multi-reference configuration interaction plus Davidson corrections (MRCI + Q) and the all-electron basis sets of ANO-RCC. The relativistic effect and the spin-orbit coupling splits are included, because both Sr and I are heavy atoms. Based on the obtained potential energy curves, we solve the Schrödinger equation of nuclear motion to determine the rovibrational energy levels and the Franck-Condon factors. The spectroscopic parameters are obtained by fitting the rovibrational energy levels with the Dunham expression. The radiation lifetimes, the Doppler and recoil temperatures between the X2Σ+ and the 2Π1/2/2Π3/2/B2Σ+ states are calculated. 5-color laser cooling schemes for the molecule are proposed, which can lead to the total effective Franck-Condon factors being 0.99983, 0.99979, and 0.99941 for the three transitions, respectively. All the obtained results suggest that the SrI molecule is a feasible candidate for laser cooling.  相似文献   

6.
The electronic structure of CrF and CrCl in X 6Σ+, 6Π, 6Δ, A6Σ+, 4Σ+, 4Π, and 4Δ states that correlate with the low lying 6S, 6D, and 4D states of Cr+ have been studied, using large atomic natural orbital (ANO) basis sets and a variety of ab initio methods, including multi-reference configuration interaction (MRCI) and coupled cluster with perturbative triples (RCCSD(T)). We include scalar relativistic effects perturbatively and also explore the consequence of correlating the 3s and 3p electrons on the transition metal. We report T e, R ee, as well as dipole moments, bond energies, and charge distributions and compare with the available experimental data as well as previous theoretical results.  相似文献   

7.
Electronic states of a new molecular species, SiAs, correlating with the three lowest dissociation channels are characterized at a high-level of theory using the CASSCF/MRCI approach along with quintuple-ξ quality basis sets. This characterization includes potential energy curves, vibrational energy levels, spectroscopic parameters, dipole and transition dipole moment functions, transition probabilities, and radiative lifetimes. For the ground state (X2Π), an assessment of spin–orbit effects and the interaction with the close-lying A2Σ+ state is also reported. Similarities and differences with other isovalent species such as SiP and CAs are also discussed.  相似文献   

8.
This work explored the spectroscopic parameters and vibrational properties of the 21 Λ–S and 42 Ω states of the AlC radical. The PECs were calculated with the CASSCF method, which was followed by the icMRCI+Q approach. The A4Π, a2Π, 52Π, 22Δ, and 12Φ states as well as the first well of B4Σ? state were inverted with the spin–orbit coupling (SOC) effect included; the 14Δ, 14Σ+, and 22Σ? states as well as the second wells of the B4Σ?, 22Σ+, 32Σ+, 42Π and 52Π states were weakly bound, which well depths were less than 650 cm?1; the B4Σ?, 22Σ+, 32Σ+, 42Π, 52Π, and 22Δ states had double wells and the second wells of these states except for B4Σ? had only several vibrational states; the avoided crossings existed between the 22Σ+ and 32Σ+ states, the 32Σ+ and 42Σ+ states, the B4Σ? and 34Σ? states, the 22Δ and 32Δ states, the 42Π and 52Π states, the 52Π and 62Π states, as well as the 24Π and 34Π states. The extrapolation scheme, core–valence correlation and scalar relativistic corrections were included. The spectroscopic parameters and vibrational properties were determined. The TDM curves between two different Λ–S states were calculated and Franck–Condon factors of some transitions were evaluated. The SOC effect on the spectroscopic and vibrational properties was evaluated.  相似文献   

9.
The potential energy curves (PECs) of the X3Σg, D3Πu, a1Δg, b1Πu, H′3Σu, K3Σu, 13Σu+, 13Πg, 23Σu+, 23Πg, 33Πg, 33Σu+, 23Πu and 23Σg electronic states of the Si2 molecule are investigated using the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach with the correlation-consistent basis sets of Dunning and co-workers. The effects on the PECs by the core-valence correlation and relativistic corrections are included. The way to consider the relativistic correction is to use the third-order Douglas-Kroll Hamiltonian approximation. The core-valence correlation correction is made with the aug-cc-pCV5Z basis set. And the relativistic correction is performed at the level of cc-pV5Z basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). The PECs of all these electronic states are extrapolated to the complete basis set limit by the total-energy extrapolation scheme. Using the PECs, the spectroscopic parameters are determined and compared with those reported in the literature. With these PECs determined by the MRCI+Q/CV+DK+56 calculations, the vibrational levels and inertial rotation constants of the first 20 vibrational states are evaluated and compared with the RKR data for these electronic states when the rotational quantum number J equals zero. On the whole, as expected, the most accurate spectroscopic parameters and molecular constants of the Si2 molecule are determined by the MRCI+Q/CV+DK+56 calculations. And the spectroscopic parameters of the 13Σu+, 13Πg, 23Σu+, 23Πg, 33Πg, 33Σu+, 23Πu and 23Σg electronic states obtained by the MRCI+Q/CV+DK+56 calculations should be good prediction for future laboratory experiment.  相似文献   

10.
Dispersed fluorescence studies on the 6Π-X6Δ and 6Φ−X6Δ systems of the FeF radical have resulted in the observation of vibrational progressions for transitions to the X6Δ state as well as at least two previously unobserved electronic states about 5000 cm−1 above the ground state. The states are assigned as the A6Π and B6Σ+ electronic states. The spin components of both electronic states were found to be heavily perturbed resulting in uneven splittings between them. A third, weak series was also observed but could not be assigned. The (0,0) band of the 6Π7/2B6Σ+5/2 transition at 398 nm was observed in absorption by laser induced fluorescence and its rotational structure was assigned. The spectra obtained were weak because of a poor population of the B6Σ+ state by the reaction used to form FeF. The levels were found to be markedly perturbed at high J values. Attempts were made to fit the data on the 6Π7/2-B6Σ5/2+ system to an effective Hamiltonian, but the presence of perturbations meant that the system is not well described by such a model.  相似文献   

11.
12.
Using the complete active space self-consistent field (CASSCF) method followed by the internally contracted multi-reference configuration interaction (MRCI) approach in combination with the correlation-consistent basis sets, this paper studies the potential energy curves of X2Σ+, 22Σ+, 32Σ+, 12Σ?, A2Π, 22Π, 32Π, 12Δ, 14Σ+, 24Σ+, 14Σ?, 14Π, 24Π and 14Δ Λ-S states of BeBr molecule and the corresponding 30 Ω states for the first time. All the Λ-S states correlate to the first two dissociation channels, Be(1Sg) + Br(2Pu) and Be(3Pu) + Br(2Pu), of BeBr molecule. Of these Λ-S states, the 32Π and 24Π are found to be repulsive without the spin–orbit coupling, whereas 14Π, 24Π, 32Π and 24Σ+ are found to be repulsive with the spin–orbit coupling included. A2Π and 22Σ+ possess the double well whether the spin–orbit coupling effect is included or not. Only 14Σ+, 14Σ?, 12Π and 22Π are found to be the inverted Λ-S states. The spin–orbit coupling is accounted for by the state interaction approach with Breit–Pauli Hamiltonian using the all-electron cc-pCVTZ basis set. The potential energy curves determined by the internally contracted MRCI method are corrected for size-extensivity errors by means of the Davidson correction. Core–valence correlation correction is calculated with a cc-pCVTZ basis set. Scalar relativistic correction is included using the third-order Douglas–Kroll Hamiltonian approximation at the level of cc-pVTZ basis set. The spectroscopic parameters of all the Λ-S and Ω bound states are evaluated. The spectroscopic parameters are compared with those reported in the literature. Fair agreement is found between the present results and available measurements. In particular, the energy splitting of 204.43 cm?1 in the A2Π Λ-S state agrees well with the measurements of 201 cm?1. Analyses demonstrate that the spectroscopic parameters reported here can be expected to be reliably predicted ones.  相似文献   

13.
Using the CASSCF method followed by the internally contracted MRCI approach in combination with the correlation-consistent basis sets, the potential energy curves (PECs) are calculated for the X3Π, A3Σ-, B3Σ+, C3Π, E3Δ, a1Σ+, b1Π, c1Δ, d1Σ+, e1Π, 23Σ? and 33Σ? electronic states of AlN molecule for internuclear separations from 0.1 to 1.0 nm. All the electronic states correlate to the three dissociation channels, Al(2Pu) + N(4Su), Al(2Pu) + N(2Du) and Al(2Pu) + N(2Pu). Of these 12 electronic states, only the 23Σ? possesses the double well. The PECs determined by the internally contracted MRCI approach are corrected for size-extensivity errors by means of the Davidson correction. The convergent behavior of present calculations is observed with respect to the basis set and level of theory. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is discussed. Scalar relativistic correction calculations are performed by the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVTZ basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated by fitting the first ten vibrational levels when available, which are obtained by solving the ro-vibrational Schrödinger equation with the Numerov’s method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Σ?, B3Σ+, C3Π, a1Σ+ and b1Π electronic states to the ground state are calculated for several low vibrational levels, and some necessary discussion has been made.  相似文献   

14.
The potential energy curves (PECs) are calculated for the 20 Λ-S states (X2Πg, A2Πu, B2Σ?g, a4Πu, b4Σ?g, b′4Πg, c4Σ?u, 12Σ+g, 12Σ+u, 12Σ?u, 14Σ+g, 14Σ+u, 14Δg, 14Δu, 16Σ+g, 16Σ+u, 16Πg, 16Πu, 24Πg and 24Πu) of O2+ cation and their corresponding 58 Ω states. Of these 20 Λ-S states, the 16Πu state is found to be repulsive. The 12Σ+g, 14Σ+u, c4Σ?u and 14Δu states are found to possess the double well. The b4Σ?g, 16Σ+g, 14Σ+u, a4Πu, A2Πu, 16Πg and 24Πg states are found to be inverted with the spin–orbit coupling effect included. The b′4Πg, 16Πg, 16Σ+g, 14Σ+u and 14Δu states, and the second well of the 12Σ+g state are found to be the weakly bound states. The b′4Πg state is found to possess one well with one barrier. The PECs are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction in combination with the aug-cc-pV6Z basis set. The core–valence correlation and scalar relativistic corrections are included. The convergent behaviour of present calculations is discussed with respect to the basis set and theoretical level. The spin–orbit coupling effect is accounted for. The PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated, and compared with available measurements. It demonstrates that the spectroscopic parameters reported here can be expected to be reliably predicted ones.  相似文献   

15.
董嫣然  张树东  侯圣伟  程起元 《中国物理 B》2012,21(8):83104-083104
Potential energy curves(PECs) for the ground state(X 2 Σ +) and the four excited electronic states(A 2 Π,B 2 Π,C 2 Σ +,4 Π) of a BeH molecule are calculated using the multi-configuration reference single and double excited configuration interaction(MRCI) approach in combination with the aug-cc-pVTZ basis sets.The calculation covers the internuclear distance ranging from 0.07 nm to 0.70 nm,and the equilibrium bond length R e and the vertical excited energy T e are determined directly.It is evident that the X2Σ+,A2Π,B2Π,C2Σ+ states are bound and 4Π is a repulsive excited state.With the potentials,all of the vibrational levels and inertial rotation constants are predicted when the rotational quantum number J is set to be equal to zero(J = 0) by numerically solving the radial Schr¨odinger equation of nuclear motion.Then the spectroscopic data are obtained including the rotation coupling constant ω e,the anharmonic constant ωexe,the equilibrium rotation constant Be,and the vibration-rotation coupling constant αe.These values are compared with the theoretical and experimental results currently available,showing that they are in agreement with each other.  相似文献   

16.
An ab initio calculation has been performed on the lowest seven doublet and six quartet Rydberg states of CIO at the CASSCF/MRCI level and with basis sets suitable for the extended molecular orbitals of such states (aug-cc-pVTZ with up to eleven extra Gaussian functions). Calculations on the quartet states reveal the energy ordering of Rydberg orbitals to be 4sσ, 4pπ, 4pσ;, 3dδ, 3dσ and 3dπ. The calculated doublet ab initio potential curves confirm experimental assignments of the C2Σ- and F2Σ- states but require reassignments for the symmetries of the D (2Δ), E (2Π) and H (2Δ) Rydberg states. These revisions are supported by spin-orbit coupling calculations that suggest the separation between the Ω components is small. In addition, a 2Σ+ state has been identified as the likely upper state for two previously unassigned vibronic bands recorded in absorption studies.  相似文献   

17.
Carbon monosulfide was detected in outer space by rovibrational spectroscopy of the X 1Σ+ state and A 1Π – X 1Σ+ system. This work calculated the potential energy curves and dipole moment functions of the X 1Σ+ 0+ and A 1Π1 states, and computed the transition dipole moments between the two states employing the CASSCF method, followed by the valence icMRCI approach. Core-valence correlation and scalar relativistic corrections were included. The extrapolation of potential energies to the complete basis set limit was performed. The spin-orbit coupling effect was included. The Einstein A coefficients, band origins, and oscillator strengths were calculated for the rovibrational transitions when J?≤?150. The rovibrational transitions of the X 1Σ+ 0+ and A 1Π1 states became very weak when Δυ?≥?6. The Einstein A coefficients of vibronic emissions of the A 1Π1 – X 1Σ+ 0+ system were large, indicating that the emissions were able to be measured easily through spectroscopy. Several rovibrational transitions of the A 1Π1 – X 1Σ+ 0+ system were analysed in detail. The distribution of radiative lifetime varying as rotational quantum number was calculated. The results obtained in this work agree well with the available experimental values.  相似文献   

18.
The potential energy curves of 10 Λ–S states of BS+ yielded from the first four dissociation limits are calculated by the internally contracted multireference configuration interaction approach with the Davidson correction. The core-valence correlation and scalar relativistic corrections are included. Basis on the calculated potential energy curves, the spectroscopic parameters are evaluated. All the PECs are extrapolated to the complete basis set limit. The spin-orbit coupling are taken into account by the state interaction method with the Breit-Pauli Hamiltonian. Finally, the transition dipole moments, Franck-Condon Factors and radiative lifetimes of transitions from the 23Π0-, 23Π0+, 23Σ0 - and 23Σ1 - states to ground state 13Π2 are predicted for future experiment.  相似文献   

19.
利用同步辐射和多级光电离吸收池,在14—20 eV (890—620 Å)范围内测量了CO绝对光吸收谱,得到了CO离子态的电离能. 根据CO绝对光吸收谱,结合理论计算,分别识别了收敛到CO+三个电子态(Χ2Σ+, Α2Π和B 2Σ+)的Rydberg系列. 不仅扩充了前人识别的Rydberg系列和振动序列,而且探索性地识别了收敛到CO+关键词: 同步辐射 多级光电离吸收池 Rydberg系列 振动序列  相似文献   

20.
ABSTRACT

The adiabatic potential energy curves for ground and many excited states of 1, 3Σ+, 1,3Π, 1,3Δ symmetries of the LiNa molecule have been performed. We have used an ab initio approach based on non-empirical pseudopotentials, parameterised l-dependent polarisation potentials and full configuration interaction calculations. In addition, the adiabatic potential energy curves determined in our previous work [Mabrouk and Berriche, J. Phys. B: At. Mol. Opt. Phys. 41, 155101 (2008).] are corrected by using a diabatisation procedure, based on the effective Hamiltonian theory and an effective metric. The diabatic permanent moments for first 10 1Σ+ electronic states show linear behaviours, especially at intermediate and large distance. The transition dipole moment between neighbour states has revealed many peaks located around the avoided crossing positions. The radial coupling between the adiabatic states was calculated using the Hellmann-Feynman formula and numerical differentiation of the rotation matrix. The first and the second derivatives revealed many peaks, associated to neutral-neutral and ionic-neutral crossings. Furthermore, the radial coupling is used to evaluate the adiabatic correction, which is found to be of an order of tens and hundreds of cm?1, especially of higher excited states. In addition, we have determined the vibrational level spacing for all studied states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号