首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrical conductivity and dielectric measurements were carried in the temperature range covering the commensurate ferroelectric-incommensurate-paraelectric normal phases (300-600 K) for the three main crystallographic axes of K2ZnCl4 single crystals. The values of activation energies in the three phases were calculated and discussed. A thermal hysteresis of about 12 K is observed which deduce the presence of first order transition for the lock-in ferroelectric transition at Tc=404 K. Conductivity anomalies were observed in both ferroelectric and paraelectric phases. The conduction mechanism was discussed. The suggested occurrence of discommensuration in K2ZnCl4 crystals upon the lock-in transition in contrast with conductivity and dielectric results explains the anomalous behavior for the b-axis measurements. The orientation of these discommensuration was discussed on a view of projection in the three standard crystallographic directions.  相似文献   

2.
The results of measurements of the time dependences of the dielectric constant of TlGaSe2 in the commensurate ferroelectric phase are presented. From the result of the observation of the decay of ε at different stabilized temperatures below the commensurate phase transition temperature after cooling from the incommensurate phase, the presence of two different characteristic relaxation time constants with the same temperature behaviour has been revealed. This peculiarity is considered as a result of a coexistence of two polar sublattices in the temperature range below 110 K. According to these results, the previously reported dielectric anomaly at about 103 K is considered as a final lock-in phase transition accompanied by the forming of the antiferroelectric state in TlGaSe2.  相似文献   

3.
(1−x)NaNbO3-(x)ABO3 perovskite solid solutions belonging to group II according to the Krainik classification [Izv. Akad. Nauk SSSR, Ser. Phys. 28 (1964) 643] exhibit a dramatic diffusion of the dielectric permittivity ε′ maximum and relaxor-type behavior when the second component concentration exceeds a threshold value x0. The concentration phase transition to this relaxor-like phase is abrupt (of the first order kind) that is seen from the step in the dependence of the ε′(T) maximum temperature, Tm, on x. Some relaxor-like properties appear even at x<x0 in the course of cooling while disappear during the course of heating. Due to this fact and because of coupling of the antiferroelectric (AFE) and ferroelectric (FE) order parameters a giant (up to 100 K) temperature hysteresis of ε′(T) arises at AFE-AFE first order phase transition. The Tm values of all the known NaNbO3-ABO3 relaxor-type compositions are well below the room temperature and the dielectric permittivity maximal values, εm, are much lower than in the case of Pb-containing relaxors. However both Tm and εm values can be increased substantially by Li or K-doping leading to the formation of NaNbO3-ABO3-LiNbO3 (KNbO3) solid solutions.  相似文献   

4.
Phase transition has been found in (NH4)2ZnCl4 at T = 266 ± 0.5 K by NQR method. There is a ferroelectric phase below Tc with a space group P21cn and with the trebling of the elementary lattice parameter along the axis c. Above the phase transition temperature in the crystal (NH4)2ZnCl4 an incommensurate phase is realized.  相似文献   

5.
The dielectric constants and the spontaneous polarization of Rb2ZnCl4-crystals have been investigated in order to characterize the nature of the transitions at 303, 195 and 74.5 K. The dielectric anomalies around 303 K hint at a critical exponent β = 0.36 ± 0.03 in the incommensurate phase. Close to 195 K the commensurate state can be induced by electric fields in agreement with an appropriate Clausius-Clapeyron relation. The polarization measurements further show that Rb2ZnCl4 has a (second) ferroelectric transformation at 74.5 K.  相似文献   

6.
Crystals of the (NH4)2SO4 ammonium sulfate are studied using x-ray diffractometry. It is revealed that the temperature dependence of the lattice parameters exhibits an anomalous behavior, namely, a global hysteresis, and an anomalous increase in the lattice parameter a and the unit cell volume at temperatures below the ferroelectric phase transition point (T c=223 K). The series of superstructure reflections observed corresponds to an incommensurate composite structure. Analysis of the temperature behavior of the mismatch parameters for the matrix (host) and superstructure (guest) lattices demonstrates that the (NH4)2SO4 compound undergoes a number of phase transitions, including a transition to a three-dimensionally incommensurate composite phase and transitions to commensurate (along one of the crystallographic directions) composite phases.  相似文献   

7.
Temperature dependences of the dielectric permittivity of betaine phosphite crystals are studied both without and under application of an electric bias. It is shown that, in view of the fact that the high-temperature improper ferroelastic (antiferrodistorsive) phase transition at T c1=355 K is nearly tricritical, the nonlinear temperature dependence of inverse dielectric permittivity in the paraelectric phase and the effect of the field on the dielectric permittivity can be described within a phenomenological model containing two coupled (polar and nonpolar) order parameters with a negative coupling coefficient. An analysis of the model revealed that, in the case where two phase transitions, a nonpolar and a ferroelectric one, can occur in the crystal, all of its dielectric properties, including the polarization response in a field, can be described by one dimensionless parameter a. For the crystal under study, we have a=?2.5. This value of the parameter corresponds to a second-order ferroelectric transition far from the tricritical point, at which a=?1. It is shown that the polarization response in the paraelectric phase in an electric field calculated within this model differs radically from that in the ferroelectric phase-transition model for which the Curie-Weiss law holds in the paraelectric phase.  相似文献   

8.
The effects of hydrostatic pressure and substitution of Rb+for the ammonium cations on the ferroelectric phase transition temperature in NH4H(ClH2CCOO)2 have been studied by electric permittivity measurements. The transition temperature (Tc) decreases with increasing pressure up to 800 MPa and the pressure coefficient dTc/dp=−1.4×10−2 [K/MPa] has been experimentally determined. The substitution of Rb+ for the ammonium cations has been shown to considerably lower the ferroelectric phase transition temperature Tc. In mixed crystals, additional electric permittivity anomaly has been clearly evidenced. The results are discussed assuming a model, which combines polarizability effects, related to the heavy ion units, with the pseudo-spin tunnelling.  相似文献   

9.
Structural, dielectric, and ferroelectric properties of a novel high-k ‘Y5V’ (Ba1−xLax)(Ti1−x/4−yCey)O3 ceramics (where x=0.03 and y=0.05, denoted by BL3TC5) with the highest ‘Y5V’ dielectric response (ε′>10 000) among rare-earth-doped BaTiO3 ceramics to date are investigated in detail using SEM, TEM, XRD, DSC, EPR, Raman spectroscopy (RS), temperature and frequency, electric field dependences of dielectric permittivity (ε′), and temperature and electric field dependences of ferroelectric hysteresis loops. The BL3TC5 diffusion of ferroelectric phase transition occurs around dielectric peak temperatures (Tm) near a room temperature characteristic of dielectric thermal relaxation. Powder XRD data and defect complex model were given. “Relaxor” behavior associated with an order/disorder model and formation of a solid solution were discussed. The EPR results provided the evidence of Ti vacancies as compensating for lattice defects. High-k relaxor nature of BL3TC5 is characterized by an average cubic structure with long-range lattice disordering and local polar ordering; a slow change of the ε′ (T) and Pr(T) curves around Tm; no phase transition observed by DSC; and a broad, red-shifted A1 (TO2) Raman phonon mode at 251 cm−1 accompanying the disappearance of the “silent” mode at 305 cm−1 and a clear anti-resonance effect at 126 cm−1 at room temperature.  相似文献   

10.
Crystal structure of Rb3D(SeO4)2 has been investigated at 25 K (below the transition temperature Tc=95.4 K) by single-crystal neutron diffraction. Accompanying the transition, the SeO4 groups, which are all equivalent in the phase above the transition (space group A2/a), split into eight nonequivalent groups in a superlattice (a×2b×2c, space group A2) in the low-temperature phase. Based on the D atom positions obtained, each of the SeO4 groups was identified to be in the state closer to a HSeO4 ion or to a SeO42− ion and the dipole arrangement of SeO4-D-SeO4 dimer was revealed. This dipole arrangement has ‘ferri’ structure along the polar b-axis, but ‘antiferro’ structure in the plane perpendicular to the b-axis. These results are consistent with the characteristics found in the earlier dielectric measurements.  相似文献   

11.
Dielectric measurements for single crystal of betaine arsenate (CH3)3NCH2COO·H3AsO4 connected with the ferroelectric phase transition at 119 K were performed. The temperature dependence of electric permittivity was measured at dc electric fields up to 700 kV/m. The results show significant suppression of the dielectric constant by the application of dc field. Deviation from the classical behavior was observed. The electric permittivity was also measured in the paraelectric phase at constant temperature as a function of electric field intensity up to 700 kV/m. The electric permittivity might be well described by the classical relation with additional term including contribution to permittivity coming from clusters. The fit parameters indicate that the polar-clusters carries polarization P0=0.7- with the clusters size of L=12-20 nm.  相似文献   

12.
Ba4Sm9.33Ti18O54-Ag (BST-Ag) composites were prepared by a solid-state ceramic route and its dielectric properties were investigated in the vicinity of percolation threshold. The structure and microstructure of the composites were analyzed by X-ray diffraction along with optical and scanning electron microscopy observations. The effects of silver content and frequency on the dielectric properties of BST-Ag composites were studied using a LCR meter. The relative permittivity (εr) of the composite increases with silver content below the percolation limit and is in agreement with power law. A 0.14 volume fraction of silver loading increases the relative permittivity of the composite from 50 to 450 at 10 kHz. Addition of 0.15 volume fraction of silver increases the relative permittivity of the composite in the order of 105. It is found that the giant relative permittivity is almost constant for frequencies from 1 kHz to 1 MHz. This high εr composite offers the perspectives for application in electromechanical devices.  相似文献   

13.
The dependence of loss tangent (tanδ) and relative permittivity (εr) on temperature and frequency has been reported for Na2-XKXTi3O7 (with X=0.2, 0.3, 0.4) ceramics. The losses are characteristic of dipole mechanism and electrical conduction. The peaks of εr at high temperature indicate a possible ferroelectric phase transition for all three compositions. The results of a.c. conductivity studies on the same samples have also been reported. The corresponding ln(σT) versus 1000/T plots have been divided into five regions namely I, II, III, IV and V. The various conduction mechanisms in the different regions have been stressed. Furthermore, the log(σ) versus frequency plots for all the above samples reveal that the electronic hopping (polaron) conduction, which diminishes with the rise in temperature, is dominant in the lower temperature region. The interlayer ionic conduction seems to play a major role in conduction towards higher temperature.  相似文献   

14.
The dielectric constant of deuterated ammonium Rochelle salt along the three crystallographic axes as well as the pyroelectric charge density developed on the crystal surface perpendicularly to the b-axis have been measured with a high temperature resolution. The para- to ferroelectric transition at Tc = ?159°C shows a thermal hysteresis of ΔT = 0.15°C. This and the discontinuities in the dielectric constant along all three axes show that the phase transition is of the first-order. No phase intermediate between the para- and the ferroelectric phases could be detected.  相似文献   

15.
We report on the ac dielectric permittivity (ε) and the electric conductivity (σω), as function of the temperature 300?K?T4IO3. The main feature of our measured parameters is that, the compound undergoes a ferroelectric phase transition of an improper character, at (368?±?1)K from a high temperature paraelectric phase I (Pm21 b) to a low temperature ferroelectric phase II (Pc21n). The electric conduction seems to be protonic. The frequency dependent conductivity has a linear response following the universal power law (σ( ω )?=?A(T s (T)). The temperature dependence of the frequency exponent s suggests the existence of two types of conduction mechanisms.  相似文献   

16.
DC electrical conductivity for a virgin and poled annealed (NH4)2ZnCl4b-axis single crystal shows a defect controlled property. A Schottky mechanism is a probable mechanism of conduction in regions of strong structural transitions. The rise of conductivity in the incommensurate and paraelectric phases is linked to an increase in discommensurations density. The activation energies (ΔE) in the three phases region were calculated. DTA measurements shows that the crystal is stable up to 200 °C and the phase transition temperatures were observed at 42, 94.8 and 137 °C. The effective activation energy (Ee) was obtained using Kissinger and Mahadevan equations. It was found to be equal to 0.49 eV. This correlates with the value obtained through DC conductivity.  相似文献   

17.
A device for simultaneous measurement of thermal properties (specific heat, latent heat and related properties) and electric properties (such as permittivity, dielectric spectroscopy) based on conduction calorimetry is explained. The device is used to study the commensurate-incommensurate (lock-in) phase transition in Rb2ZnCl4 single crystal. This transition is found to be first-order. Thermal and dielectric anomalies are discussed.  相似文献   

18.
The dielectric permittivity (?) of TMA-ZC single crystals was measured along the mean crystallographic axes a, b and c, in a temperature range from 273 to 340 K. The ?-T relationship exhibited peak values at Ti=296 K and Tc1=279 K for the three axes. These peaks are attributed to the contribution of discommensurations. The d.c. and a.c. electrical conductivity showed anomalous variation at the same transition temperatures, with a remarkable change in the value of the activation energy around the transition temperatures. The j-E characteristic indicates different types of electrical conduction. The mechanism of the phase transition and the electrical process were discussed on the basis of Shottky and Frenkel conduction mechanisms.  相似文献   

19.
The infrared reflection spectra for the three main polarizations of K2ZnCl4 in the orthorhombic commensurate ferroelectric phase are reported at room temperature. Phonon frequencies are assigned to internal and external modes by comparison with K2SeO4 and Rb2ZnCl4 data. The dielectric constant along the ferroelectric axis is essentially due to the weight of the low-frequency heavily-damped mode.  相似文献   

20.
Temperature dependences of the dielectric constants ?i and of the birefringences Δni for light propagation directions along all the three crystallographic axes (i = a, b, c) have been measured between 5 and 350 K. The optical measurements clearly reveal a new phase transition at TL = 75 K, below which the crystal structure is transformed from the ferroelectric Pna21 phase into an unknown low temperature phase, possibly the monoclinic space group P1121. Small peaks in the dielectric constants ?a and ?b have been observed at this transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号