首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李敏  张俊英  张跃  王天民 《中国物理 B》2012,21(8):87301-087301
The N-doping effects on the electronic properties of Cu2O crystals are investigated using density functional theory. The calculated results show that N-doped Cu2O with or without oxygen vacancy exhibits different modifications of electronic band structure. In N anion-doped Cu2O, some N 2p states overlap and mix with the O 2p valence band, leading to a slight narrowing of band gap compared with the undoped Cu2O. However, it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping.  相似文献   

2.
Oxygen vacancy formation and migration in La0.9 Sr0.1 Ga0.8 Mg0.2O3δ (LSGM) with various crystal symmetries (cubic, rhombohedral, orthorhombic, and monoclinic) are studied by employing first-principles calculations based on density functional theory (DFT). It is shown that the cubic LSGM has the smallest band gap, oxygen vacancy formation energy, and migration barrier, while the other three structures give rise to much larger values for these quantities, implying the best oxygen ion conductivity of the cubic LSGM among the four crystal structures. In our calculations, one oxygen vacancy migration pathway is considered in the cubic and rhombohedral structures due to all the oxygen sites being equivalent in them, while two vacancy migration pathways with different migration barriers are found in the orthorhombic and monoclinic symmetries owing to the existence of nonequivalent O1 and O2 oxygen sites. The migration energies along the migration pathway linking the two O2 sites are obviously lower than those along the pathway linking the O1 and O2 sites. Considering the phase transitions at high temperatures, the results obtained in this paper can not only explain the experimentally observed different behaviours of the oxygen ionic conductivity of LSGM with different symmetries, but also predict the rational crystal structures of LSGM for solid oxide fuel cell applications.  相似文献   

3.
Nitrogen doping-induced changes in the electronic properties, defect formation, and surface structure of TiO2 rutile(110) and anatase(101) single crystals were investigated. No band gap narrowing is observed, but N doping induces localized N 2p states within the band gap just above the valence band. N is present in a N(III) valence state, which facilitates the formation of oxygen vacancies and Ti 3d band gap states at elevated temperatures. The increased O vacancy formation triggers the 1 x 2 reconstruction of the rutile (110) surface. This thermal instability may degrade the catalyst during applications.  相似文献   

4.
顾艳妮  吴小山 《物理学报》2017,66(16):163102-163102
具有一定能量的光照导致低温绝缘二氧化钒(VO_2)发生绝缘体金属转变.本文通过密度泛函理论的Heyd-Scuseria-Ernzerhof杂化泛函方法对含氧空穴的低温绝缘VO_2非磁M1相进行第一性原理研究.研究发现,含氧空穴的M1的晶格参数几乎不变,但氧空穴附近的长的V—V键长却变短了.进一步研究发现,尽管纯的非磁M1的带隙是0.68 eV,但含O1和O2位的氧空穴非磁M1带隙分别为0.23 eV和0.20 eV,同时含有O1和O2位氧空穴非磁M1带隙为0.15 eV,这很好地解释了实验结果.  相似文献   

5.
The structures and electronic properties of Zn O nanowires(NWs) of different diameters are investigated by employing the first-principles density functional theory. The results indicate that the oxygen vacancy(VO) exerts a more evident influence on the band gap of the Zn O NWs. However, the effect will be weakened with the increase of the diameter. In addition, the energy band shifts downward due to the existence of VOand the offset decreases with the reduction of the VOconcentration. As the concentration of surface Zn atoms decreases, the conduction band shifts downward, while 2p electrons are lost in the oxygen vacancy, resulting in the split of valence band and the formation of an impurity level. Our findings agree well with the previous observations and will be of great importance for theoretical research based on Zn O NWs.  相似文献   

6.
The effect of nitrogen (N) incorporation into HfSiO on the electronic structure and band alignment of HfSiO films was investigated. N depth profile data obtained by medium energy ion scattering (MEIS) showed that the concentration of N or the bonding or electronic state of N in the film was stable when the film was annealed at 950 °C, while the oxygen (O) in HfSiON films was present in dissociated form, as evidenced by the unoccupied electronic state of O. The valence band offsets of the HfSiO films were strongly affected by N incorporation due to the presence of N in a 2p state. Moreover, a reduction in the conduction band offset of a HfSiO film was confirmed after the film was annealed in an atmosphere of N2. The unoccupied state of the O vacancy is responsible for the change in the conduction band offset. The results of ab-initio calculations for the density of states (DOS) of HfSiO and HfSiON supercells were in agreement with the experimental results. The incorporation on N into HfSiO prevents the formation of a gap-state inside the band gap despite the fact that an O vacancy is generated in the film.  相似文献   

7.
周诗文  彭平  陈文钦  庾名槐  郭惠  袁珍 《物理学报》2019,68(3):37101-037101
采用基于密度泛函理论加U的计算方法,研究了Ce和O空位单(共)掺杂锐钛矿相TiO_2的电子结构和光吸收性质.计算结果表明,Ce和O空位共掺杂TiO_2的带隙中出现了杂质能级,且带隙窄化为2.67 eV,明显比纯TiO_2和Ce,O空位单掺杂TiO_2的要小,因而可提高TiO_2对可见光的响应能力,使TiO_2的光吸收范围增加.光吸收谱显示,掺杂后TiO_2的光吸收边发生了显著红移;在400.0—677.1 nm的可见光区,共掺杂体系的光吸收强度显著高于纯TiO_2和Ce单掺杂TiO_2,而略低于O空位单掺杂TiO_2.此外,Ce掺杂TiO_2中引入O空位后,TiO_2的导带边从-0.27 eV变化为-0.32 eV,这表明TiO_2的导带边的还原能力得到了加强.计算结果为Ce和O空位共掺杂TiO_2在可见光光解水方面的进一步研究提供了有力的理论依据.  相似文献   

8.
The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.  相似文献   

9.
The electronic structure of perfect ammonium dihydrogen phosphate(ADP) and defective ADP with an oxygen(O) vacancy are calculated by screened-exchange hybrid density functional HSE06. The optimized structural parameters of the defective ADP crystal are analyzed. The PO_4 tetrahedron with an O vacancy is distorted and its symmetry is broken. The band gap of the defective ADP with an O vacancy is about 1.5 eV lower than the perfect ADP, which is due to the new O vacancy defect states near the valence band maximum. Moreover, more peaks appear in the low-energy region(lower than 6 eV) in the curves of the linear optical properties for the defective ADP. The results indicate that the O vacancy will significantly influence the laser damage performance of ADP crystals.  相似文献   

10.
The magnetism driven by cation defects in undoped CeO 2 bulk and thin films is studied by the density functional theory corrected for on-site Coulomb interactions (DFT+U) with U = 5 eV for the Ce4f states and U = 7 eV for the O2p states. It is found that the Ce vacancies can induce a magnetic moment of the ~ 4 μ B /supercell, which arises mainly from the 2p hole state of the nearest neighbouring O atom (~ 1 μ B on per oxygen) to the Ce vacancy. The effect of the methodology is investigated, indicating that U = 7 eV for the O2p state is necessary to obtain the localized O2p hole state in defective ceria with cation vacancies.  相似文献   

11.
PbWO4晶体空位型缺陷电子结构的研究   总被引:12,自引:1,他引:11       下载免费PDF全文
姚明珍  梁玲  顾牡  段勇  马晓辉 《物理学报》2002,51(1):125-128
采用基于密度泛函理论的相对论性离散变分和嵌入团簇方法计算了PbWO4晶体中与氧空位和铅空位相关缺陷的态密度分布,并运用过渡态方法计算了其激发能.结果表明:PbWO4晶体中WO3+VO缺陷的O2p→W5d跃迁可引起350nm和420nm附近的吸收,并且发现VPb的存在可以使WO42基团的禁带宽度明显变小 关键词: PbWO4晶体 密度泛函 氧空位和铅空位 态密度分布  相似文献   

12.
马丽莎  张前程  程琳 《物理学报》2013,62(18):187101-187101
基于密度泛函理论的第一性原理平面波超软赝势方法, 计算了Zn吸附到TiO2(101)清洁表面、含有氧空位(VO)的缺陷表面以及既含有氧空位(VO)又含有羟基(-OH)表面的能量、Mulliken重叠布居数以及电子结构, 并找到了Zn在每种表面的最稳定结构(分别为模型(c), 模型(aI)以及模型(aII)). 通过对三种表面稳定结构的分析、对比发现: 首先, Zn原子吸附到清洁TiO2(101)表面上, 主要与表面氧相互作用, 形成Zn–O共价键; 其次, 当Zn原子吸附到缺陷表面时, 吸附能减小到-1.75 eV, 说明Zn更容易吸附到氧空位上(模型(aI)); 最后, 纵观表面模型的能带结构以及态密度图发现, -OH的引入并没有引进新的杂质能级, Zn吸附此表面, 即Zn-TiO2-VO-OH, 使得禁带宽度缩短到最小(1.85 eV), 从而有望提高TiO2的光催化活性. 关键词: 密度泛函理论 氧空位 羟基 Zn原子  相似文献   

13.
The electronic structures of Fe-doped TiO2 anatase (1 0 1) surfaces have been investigated by all spin-polarized density functional theory (DFT) plane-wave pseudopotential method. The general gradient approximation (GGA)+U (Hubbard coefficient) method has been adopted to describe the exchange-correlation effects. Through the density functional calculations for the formation energies of various configurations, the complex of a substitutional Fe plus an O vacancy was found to form easily in the most range of O chemical potential. The calculated density of the states of the system of Fe-doped surface with a surface oxygen vacancy shows a band gap narrowing from 2.8 to 1.9 eV comparing with the pure surface due to the synergistic effects of surface Fe impurities with O vacancies. The system processes high visible light sensitivity and photocatalytic ability by decreasing extrinsic absorption energy. By comparing the partial DOS of some O and Ti atoms lying in the outermost and bottom layers of Fe-doped surfaces, it was found that the influence of Fe impurities on the electronic structure of the system is localized.  相似文献   

14.
First-principles density functional theory calculations have been carried out to investigate electronic structures of anatase TiO2 with substitutional dopants of N, Nd, and vacancy, which replace O, Ti, and O, respectively. The calculation on N-doped TiO2 with the local density approximation (LDA) demonstrates that N doping introduces some states located at the valence band maximum and thus makes the original band gap of TiO2 smaller. Examining the effect of the strong correlation of Nd 4f electrons on the electronic structure of Nd-doped TiO2, we have obtained the half-metallic ground state with the LDA and the insulating ground state with the LDA+U (Hubbard coefficient), respectively. In addition, the calculation on vacancy-doped TiO2 with the LDA shows that a vacancy can induce some states in the band-gap region, which act as shallow donors.  相似文献   

15.
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod- ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.  相似文献   

16.
A first-principles study has been performed to evaluate the electronic and optical properties of wurtzite Zn1-xMgxO. Substitutional doping is considered with Mg concentrations of x = 0, 0.0625, 0.125, 0.1875 and 0.25, respectively. Mg incorporation can induce band gap widening due to the decrease of Zn 4s states. The imaginary part of the dielectric function shows that the optical transition from band edge emission decreases slightly with increasing Mg contents. The optical band gap also increases from 3.2 to 3.7 eV with increasing Mg contents from 0.0625 to 0.25. The calculated results suggest that relatively high Mg concentration is necessary for effective band gap engineering of wurtzite Zn1-xMgxO.  相似文献   

17.
钛酸铅(PTO)因具有优异的铁电、压电特性及光学性质而备受关注.但B、N掺杂对顺电相PTO电子结构和光学性质的影响还不明确,因此,利用第一性原理对立方PTO开展准确的性质预测尤为必要.本文采用广义梯度近似的PBE泛函(GGA-PBE)和杂化泛函(HSE06)研究了B、N替位掺杂(BO、NO)和O空位(VO)对PTO的基态性质、电子结构和光学性质的影响.研究表明:贫氧态的PTO比富氧态更容易形成杂质缺陷,且NO缺陷最难形成.当BO、NO缺陷存在时,PTO的价带顶和导带底向低能量方向移动,在两者之间出现杂质能级,使其导电性能提高且含BO的PTO为间接带隙半导体,而含NO的PTO为直接带隙半导体. NO体系在波长大约为230 nm处有最大吸收峰,该峰主要源于O 2p和Ti 3d之间的电子跃迁,且NO体系对可见光的吸收能力最强,有望提高PTO的光催化能力.  相似文献   

18.
A first-principles study has been performed to understand the effect of oxygen vacancy on the electronic properties of cadmium doped rutile TiO2. We observe that Cd incorporation on rutile TiO2 induces Cd p-states on the top of the valence band which is consistent with an earlier result of Zhang et al. (2008) [5]. Furthermore, by creating an oxygen vacancy, some new states are induced, which originate from the Ti 3d electrons at the middle of the band gap and spread up to the conduction band. Therefore, the band gap of the material reduces significantly, making it suitable to act as a better photocatalyst.  相似文献   

19.
To deeply understand the effects of Si/N-codoping on the electronic structures of TiO2 and confirm their photocatalytic performance, a comparison theoretical study of their energetic and electronic properties was carried out involving single N-doping, single Si-doping and three models of Si/N-codoping based on first-principles. As for N-doped TiO2, an isolated N 2p state locates above the top of valence band and mixes with O 2p states, resulting in band gap narrowing. However, the unoccupied N 2p state acts as electrons traps to promote the electron-hole recombination. Using Si-doping, the band gap has a decrease of 0.24 eV and the valence band broadens about 0.30 eV. These two factors cause a better performance of photocatalyst. The special Si/N-codoped TiO2 model with one O atom replaced by a N atom and its adjacent Ti atom replaced by a Si atom, has the smallest defect formation energy in three codoping models, suggesting the model is the most energetic favorable. The calculated energy results also indicate that the Si incorporation increases the N concentration in Si/N-codoped TiO2. This model obtains the most narrowed band gap of 1.63 eV in comparison with the other two models. The dopant states hybridize with O 2p states, leading to the valence band broadening and then improving the mobility of photo-generated hole; the N 2p states are occupied simultaneously. The significantly narrowed band gap and the absence of recombination center can give a reasonable explanation for the high photocatalytic activity under visible light.  相似文献   

20.
The electronic band structures of wurtzite GaN with Ga and N vacancy defects are investigated by means of the first-principles total energy calculations in the neutral charge state. Our results show that the band structures can be significantly modified by the Ga and N vacancies in the GaN samples. Generally, the width of the valence band is reduced and the band gap is enlarged. The defect-induced bands can be introduced in the band gap of GMV due to the Ga and N vacancies. Moreover, the GaN with high density of N vacancies becomes an indirect gap semiconductor. Three defect bands due to Ga vacancy defects are created within the band gap and near the top of the valence band. In contrast, the N vacancies introduce four defect bands within the band gap. One is in the vicinity of the top of the valence band, and the others are near the bottom of the conduction band. The physical origin of the defect bands and modification of the band structures due to the Ga and N vacancies are analysed in depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号