首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A first-principles calculation on the electronic properties of Si/N-codoped TiO2
Authors:Weimei Shi  Qifeng ChenYao Xu  Dong WuChunfang Huo
Institution:a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
b CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
c Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:To deeply understand the effects of Si/N-codoping on the electronic structures of TiO2 and confirm their photocatalytic performance, a comparison theoretical study of their energetic and electronic properties was carried out involving single N-doping, single Si-doping and three models of Si/N-codoping based on first-principles. As for N-doped TiO2, an isolated N 2p state locates above the top of valence band and mixes with O 2p states, resulting in band gap narrowing. However, the unoccupied N 2p state acts as electrons traps to promote the electron-hole recombination. Using Si-doping, the band gap has a decrease of 0.24 eV and the valence band broadens about 0.30 eV. These two factors cause a better performance of photocatalyst. The special Si/N-codoped TiO2 model with one O atom replaced by a N atom and its adjacent Ti atom replaced by a Si atom, has the smallest defect formation energy in three codoping models, suggesting the model is the most energetic favorable. The calculated energy results also indicate that the Si incorporation increases the N concentration in Si/N-codoped TiO2. This model obtains the most narrowed band gap of 1.63 eV in comparison with the other two models. The dopant states hybridize with O 2p states, leading to the valence band broadening and then improving the mobility of photo-generated hole; the N 2p states are occupied simultaneously. The significantly narrowed band gap and the absence of recombination center can give a reasonable explanation for the high photocatalytic activity under visible light.
Keywords:Si/N-codoping  First-principles  Electronic properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号