首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents an analysis of a paper entitled "Principle of limitation of physical quantities and cyclic universe" and proposes different results for some formulae from that report.In addition,this paper shows that the principle of limits coupling may lead to an approximation of current theories(i.e.,quantum theory and relativistic theory),which have interesting correlations with the Plank formula and the special theory of relativity.  相似文献   

2.
We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of 4He. For larger domains, the limit comes from 3He overproduction. Since most of the 3He from &pmacr; 4He annihilation are themselves annihilated, the main source of primordial 3He is the photodisintegration of 4He by the electromagnetic cascades initiated by the annihilation.  相似文献   

3.
In many cases the spatially homogeneous cosmological models of General Relativity begin or end at a “big bang” where the density and temperature of the matter in the universe diverge. However in certain cases the spatially homogeneous development of these universes terminates at a singularity where all physical quantities are well—behaved (a “whimper”) and an associated Cauchy horizon. We examine the existence and nature of these singularities, and the possible fate of matter which crosses the Cauchy horizon in such a universe. The nature of both kinds of singularity is illustrated by simple models based on two-dimensional Minkowski space-time; and the possibility of other types of singularity occuring is considered.  相似文献   

4.
The principle of maximum power makes it possible to summarize special relativity, quantum theory and general relativity in one fundamental limit principle each. Special relativity contains an upper limit to speed; following Bohr, quantum theory is based on a lower limit to action; recently, a maximum power given by c 5/4G was shown to be equivalent to the full field equations of general relativity. Taken together, these three fundamental principles imply a limit value for every physical observable, from acceleration to size. The new, precise limit values differ from the usual Planck values by numerical prefactors of order unity. Among others, minimum length and time intervals appear. The limits imply that elementary particles are not point-like and suggest a lower limit on electric dipole values. The minimum intervals also imply that the non-continuity of space–time is an inevitable result of the unification of quantum theory and relativity, independently of the approach used. PACS numbers: 04.20.Cv; 13.40.Em; 04.60.-m.  相似文献   

5.
Special relativity is generalized to extra dimensions and quantized energy levels of particles are obtained. By calculating the probability of particles' motion in extra dimensions at high temperature of the early universe, it is proposed that the branes may have not existed since the very beginning of the universe, but formed later. Meanwhile, before the formation, particles of the universe may have filled in the whole bulk, not just on the branes. This scenario differs from that in the standard big bang cosmology in which all particles are assumed to be in the 4D spacetime. So, in brane models, whether our universe began from a 4D big bang singularity is questionable. A cosmological constraint on the number of extra dimensions is also given which favors N ≥ 7.  相似文献   

6.
《Physics Reports》2002,365(4):251-333
Nature abhors an infinity. The limits of general relativity are often signaled by infinities: infinite curvature as in the center of a black hole, the infinite energy of the singular big bang. We might be inclined to add an infinite universe to the list of intolerable infinities. Many theories that move beyond general relativity naturally treat space as finite. In this review we discuss the mathematics of finite spaces and our aspirations to observe the finite extent of the universe in the cosmic background radiation.  相似文献   

7.
Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.  相似文献   

8.
Cosmical Coincidences and the Dirac-Cosmos The cosmical coincidences given by the relations between macro- and microphysical quantities suggest a manifold of “small bangs” and not universal “big bang” in the evolution of the meta-galaxy. An approximative modell of such universe may be the Dirac-cosmos. We discuss the hypothesis that the “small bangs” are the “relations” of the super-galaxies. In this cases we must find two different values of the Hubble-parameter according to the differently evolutionary szenaries for the meta-galaxis and for super-galaxies.  相似文献   

9.
The discovery of the Standard Model Higgs boson opens up a range of speculative cosmological scenarios, from the formation of structure in the early universe immediately after the big bang, to relics from the electroweak phase transition one nanosecond after the big bang, on to the end of the present-day universe through vacuum decay. Higgs physics is wide ranging, and gives an impetus to go beyond the Standard Models of particle physics and cosmology to explore the physics of ultra-high energies and quantum gravity.  相似文献   

10.
范祖辉 《物理》2005,34(4):240-245
文章对微波背景辐射的各向异性、偏振及宇宙电离的历史给出了评述性介绍.从大爆炸理论的预言,到观测的发现,到其各向异性及偏振的探测,微波背景辐射(CMB)向人们揭示了丰富的宇宙学信息.文章在对基本理论作了简单介绍后,着重讲述了最新的CMB的观测结果及其物理意义.特别对微波背景各向异性探测器(Wilkinson Microwave Anisotropy Probe,WMAP)的偏振观测及其对宇宙重新电离的限制给出了较详细的叙述.  相似文献   

11.
时间的沙漏     
曹则贤 《物理》2005,34(8):545-547
时间是什么?它是无限的还是轮回的?是没有开始的还是起源于一次大爆炸?是一维的还是半维的?是实数还是虚数?该取实数值还是整数值?是参数还是变量?所有这些关于时间的模棱两可的认识都表明物理学需要一个角色普适的时间.  相似文献   

12.
In 1965, the discovery of a new type of uniform radiation, located between radiowaves and infrared light, was accidental. Known today as Cosmic Microwave background (CMB), this diffuse radiation is commonly interpreted as a fossil light released in an early hot and dense universe and constitutes today the main ’pilar’ of the big bang cosmology. Considerable efforts have been devoted to derive fundamental cosmological parameters from the characteristics of this radiation that led to a surprising universe that is shaped by at least three major unknown components: inflation, dark matter and dark energy. This is an important weakness of the present consensus cosmological model that justifies raising several questions on the CMB interpretation. Can we consider its cosmological nature as undisputable? Do other possible interpretations exist in the context of other cosmological theories or simply as a result of other physical mechanisms that could account for it? In an effort to questioning the validity of scientific hypotheses and the under-determination of theories compared to observations, we examine here the difficulties that still exist on the interpretation of this diffuse radiation and explore other proposed tracks to explain its origin. We discuss previous historical concepts of diffuse radiation before and after the CMB discovery and underline the limit of our present understanding.  相似文献   

13.
14.
We illustrate the crucial role played by decoherence (consistency of quantum histories) in extracting consistent quantum probabilities for alternative histories in quantum cosmology. Specifically, within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model sourced with a free massless scalar field, we calculate the probability that the universe is singular in the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expanding and contracting singular branches. A naive assessment of the behavior of quantum states which are superpositions of expanding and contracting universes suggests that a “quantum bounce” is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical solution throughout its history. However, a more careful consistent histories analysis shows that for arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum universe encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt universe is inevitably singular, and a “quantum bounce” is thus not possible in these models.  相似文献   

15.
If CP-nonconservation arises from spontaneous symmetry breaking in the very early universe, the universe will have a domain structure of baryon number. We propose a model of the early universe in which domains are stretched exponentially and the radius of the domains is much greater than that of the horizon of the standard big bang model, provided that the grand unified theory undergoes a first order phase transition. If the size of the stretched domains is sufficiently big to avoid pair annihilations of baryon and antibaryon domains, the difficulties of the baryon symmetric universe may be removed.  相似文献   

16.
李松岩 《大学物理》2012,31(4):40-43,54
通过对物理量的量制和单位制的介绍,全面地阐述了物理量的概念,并对文献中常出现的一些有关物理量方面的问题进行了分析和讨论.  相似文献   

17.
In this paper we have given a generalization of the earlier work by Prigogine et al. (Gen. Relativ. Gravit. 19:1, 1989; Gen. Relativ. Gravit. 21(8):767–776, 1989) who have constructed a phenomenological model of entropy production via particle creation in the very early universe generated out of the vacuum rather than from a singularity, by including radiation also as the energy source and tried to develop an alternative cosmological model in which particle creation prevents the big bang. We developed Radiation dominated model of the universe which shows a general tendency that (i) it originates from instability of vacuum rather than from a singularity. (ii) Up to a characteristic time t c cosmological quantities like density, pressure, Hubble constant and expansion parameter vary rapidly with time. (iii) After the characteristic time these quantities settles down and the models are turned into de-Sitter type model with uniform matter, radiation, creation densities and Hubble’s constant H. The de-Sitter regime survives during a decay time t d then connects continuously to a usual adiabatic matter radiation RW universe. The interesting thing in the paper is that we have related the phenomenological radiation dominated model to macroscopic model of quantum particle creation in the early universe giving rise to the present observed value of cosmic background radiation. It is also found that the dust filled model tallies exactly with that of the Prigogine’s one, which justifies that our model is generalized Prigogine’s model. Although the model originates from instability of vacuum rather than from a singularity, still there is a couple of unavoidable singularities in the model.  相似文献   

18.
19.
No other scientist may have had a greater impact on modern cosmology than the Belgian physicist, astronomer and priest Georges Lemaître. In 1927 he predicted the expansion of the universe on the basis of the cosmological field equations; and four years later he proposed what he called the primeval-atom hypothesis, the first version of the later big bang universe. In all his work on cosmology the cosmological constant Λ played a significant role. A recognized expert in the theory of general relativity, Lemaître also contributed significantly to the theoretical clarification of local and global singularity problems. Still, when he died in 1968, at a time when the standard big bang model celebrated its first victories, he was largely forgotten or recalled only as a somewhat shadowy figure of the past. This essay reviews in a historical context the scientific work of Lemaître with particular attention to his seminal contributions in the decade between 1925 and 1934.  相似文献   

20.
The covariant entropy bound conjecture is an important hint for the quantum gravity, with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing ever show the consistence between the loop gravity theory and one version of this conjecture. Recently, He and Zhang [J. High Energy Phys. 10 (2007) 077] proposed a version for the dynamical horizon of the universe, which validates the entropy bound conjecture for the cosmology filled with perfect fluid in the classical scenario when the universe is far away from the big bang singularity. However, their conjecture breaks down near big bang region. We examine this conjecture in the context of the loop quantum cosmology. With the example of photon gas, this conjecture is protected by the quantum geometry effects as expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号