首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tin oxide (SnO2) nanorods were grown by high-pressure pulsed laser deposition (PLD). The nanorods were grown without the use of a catalyst but required high background pressure growth in order to realize small grain columnar growth and nanorod formation, with nanorod formation most favored on non-epitaxial substrates. The structures and morphology were characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). X-ray diffraction and HRTEM analysis indicate that the as-grown SnO2 nanorods are single crystals with a rutile structure. The nanorods are approximately 50–90 nm in diameters and 1.5 μm in length. This method provides an approach for large area synthesis of one dimensional SnO2 nanostructure materials. PACS 81.16.Mk; 61.46.-w; 81.07.-b  相似文献   

2.
A novel method was applied to prepare β-Ga2O3 nanorods. In this method, β-Ga2O3 nanorods have been successfully synthesized on Si(1 1 1) substrates through annealing sputtered Ga2O3/Mo films under flowing ammonia at 950 °C in a quartz tube. The as-synthesized nanorods are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The results show that the nanorod is single-crystalline Ga2O3 with monoclinic structure. The β-Ga2O3 nanorods are straight and smooth with diameters in the range of 200-300 nm and lengths typically up to several micrometers. The growth process of the β-Ga2O3 nanorods is probably dominated by conventional vapor-solid (VS) mechanism.  相似文献   

3.
Nb2O5 nanorod array films were synthesized by a facile hydrothermal process using niobium metal foil and NH4F as precursors. The Nb2O5 nanorods stand on the niobium metal foil substrate and are less than 100 nm in diameter and about 1 μm in length. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) characterizations indicate that these nanorods have orthorhombic structure and grew longitudinally along 〈0 0 1〉 direction. The nanorod growth mechanism was discussed. Thermal annealing at a temperature below 500 °C did not change the microstructure of nanorods but improve the crystallinity. The Nb2O5 nanorod array films have been tested as cathode material for lithium battery, which showed a good specific capacity up to 380 mAh g−1 even after 50 charge/discharge cycles.  相似文献   

4.
Straight and well-aligned GaN nanorods have been successfully synthesized by molecular beam epitaxy (MBE) method. The GaN nanorods have been characterized by field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). SEM images show that GaN nanorods are constituted with two parts of which shapes are different from each other. The upper part of the nanorod is very thin and its lower part is relatively thick. The XRD and EDS analysis have identified that the nanorods are pure hexagonal GaN with single crystalline wurtzite structure. The TEM images indicate that the nanorods are well crystallized and nearly free from defects. The XRD, HRTEM, and SAED pattern reveal that the growth direction of GaN nanorods is 〈0001〉. The photoluminescence (PL) spectra indicate the good emission property for the nanorods. Finally, we have demonstrated about the two-step growth of the nanorods. PACS 81.07.Bc; 81.05.Ea; 81.15.Hi  相似文献   

5.
Pd-functionalized ZnS nanorods were prepared for use as gas sensors. Scanning electron microscopy revealed the diameters and lengths of the nanorods ranging from 30 to 80 nm and from 2 to 5 μm, respectively. The diameter of Pd nanoparticles ranged from 2 to 5 nm. Transmission electron microscopy revealed that ZnS nanorods and Pd nanoparticles were monocrystalline and amorphous, respectively. The responses of multiple networked ZnS nanorods sensors to 1–5 ppm NO2 were increased substantially by a combination of Pd functionalization and UV irradiation. Pristine ZnS nanorod sensors at room temperature in the dark showed a response (∼100%) almost independent of NO2 concentration in a NO2 concentration range of 1–5 ppm. Pristine ZnS nanorod sensors showed enhanced responses of 214–603% to 1–5 ppm NO2 at room temperature under UV illumination. Pd-functionalized ZnS nanorods sensors showed further enhanced responses of 355–1511% to 1–5 ppm NO2 at room temperature under UV illumination. The NO2 gas sensing mechanism of the Pd-functionalized ZnS nanorods sensors under UV illumination is discussed in depth.  相似文献   

6.
Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed.  相似文献   

7.
Perovskite strontium stannate (SrSnO3) nanorods were prepared by annealing the precursor SnSr(OH)6 nanorods at 600 °C for 3 h. The precursor nanorods were hydrothermally synthesized at 160 °C for 16 h using Sr(NO3)2 and SnCl4·5H2O as starting materials in the presence of surfactant cetyltrimethyl ammonium bromide (CTAB). As-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared ray spectroscopy (IR). The results show that the as-synthesized powders are made of SrSnO3 one-dimensional nanorods of about 0.2-1 μm length and 100-150 nm diameter. Possible formation mechanism of SrSnO3 with nanorod structure under certain conditions was preliminarily analyzed, in which it was thought that CTAB played an important role in the formation process of the nanorod structure. Electrochemical performance of the samples versus Li metal was also evaluated for possible use in lithium-ion batteries.  相似文献   

8.
ZnS nanorods were fabricated by annealing precursor ZnS nanoparticles, which were prepared by one-step, solid-state reaction of ZnCl2 and Na2S through grinding by hand at ambient temperature, in NaCl flux. The as-prepared ZnS nanorods have diameters of 40-80 nm, and lengths up to several micrometers. The structural features and chemical composition of the nanorods were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and Raman spectra.  相似文献   

9.
A new method was applied to prepare GaN nanorods. In this method, gallium oxide (Ga2O3) gel was firstly formed by a sol-gel processing using gallium ethanol, Ga(OC2H5)3, as a new precursor. GaN nanorods were successfully synthesized after annealing of the Ga2O3 gel at 1000 °C for 20 min in flowing ammonia. The as-prepared nanorods were confirmed as single crystalline GaN with wurtzite structure by X-ray diffraction (XRD), selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). Transmission electron microscopy (TEM) displayed that the GaN nanorods were straight and smooth, with diameters ranging from 200 nm to 1.8 μm and lengths typically up to several tens of microns. When excited by 280 nm light at room temperature, the GaN nanorods had a strong ultraviolet luminescence peak located at 369 nm and a blue luminescence peak located at 462 nm, attributed to GaN band-edge emission and the existence of the defects or surface states, respectively.  相似文献   

10.
The single-crystalline β-FeOOH hollow nanorods with a diameter ranging from 20∼30 nm and length in the range of 70–110 nm have been successfully synthesized through a two-step route in the solution. The phase transformation and the morphologies of the hollow β-FeOOH nanorods were investigated with X-ray powdered diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electric diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), infrared spectrum (IR) and thermo-gravimetric analysis (TGA). These studies indicate that the first step is an incomplete-reaction course. Furthermore, The formation mechanism of the hollow nanorods has been discussed. It is found that the mixed system including chitosan and n-propanol is essential for the final formation of the hollow β-FeOOH nanorods.  相似文献   

11.
High quality vertical-aligned ZnO nanorod arrays were synthesized by a simple vapor transport process on Si (111) substrate at a low temperature of 520 °C. Field-emission scanning electron microscopy (FESEM) showed the nanorods have a uniform length of about 1 μm with diameters of 40-120 nm. X-ray diffraction (XRD) analysis confirmed that the nanorods are c-axis orientated. Selected area electron diffraction (SAED) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) measurements were adopted to analyze the optical properties of the nanorods both a strong UV emission and a weak deep-level emission were observed. The optical properties of the samples were also tested after annealing in oxygen atmosphere under different temperatures, deep-level related emission was found disappeared at 600 °C. The dependence of the optical properties on the annealing temperatures was also discussed.  相似文献   

12.
Crystalline carbon nitride nanopowders and nanorods have been successfully synthesized at room temperature and pressure using the novel technique of pulsed laser ablation of a graphite target in liquid ammonia solution. High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and Fourier transform infrared spectroscopy (FTIR) were used to systematically study the morphology, nanostructure and chemical bonding. The experimental composition and structure of the nanoparticles are consistent with the theoretical calculations for α-C3N4. After 2 h ablation the particles had a size distribution ∼8–12 nm, whereas after 5 h ablation the particles had grown into nanorod-like structures with a crystalline C3N4 tip. A formation mechanism for these nanorods is proposed whereby nanoparticles are first synthesized via rapid formation of an embryonic particle, followed by a slow growth, eventually leading to a one-dimensional nanorod structure.  相似文献   

13.
Fabrication of bamboo-shaped GaN nanorods   总被引:1,自引:0,他引:1  
Bamboo-shaped GaN nanorods were formed through a simple sublimation method. They were characterized by means of X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED). The TEM image showed that the nanorods were bamboo-like. XRD, HRTEM and SAED patterns indicated that the nanorods were single-crystal wurtzite GaN. Received: 8 January 2001 / Accepted: 28 April 2001 / Published online: 20 December 2001  相似文献   

14.
Large-scale cadmium sulfide (CdS) nanorods with high quality were successfully synthesized by solvothermal method using ethylenediamine (en) aqueous as solvent. The as-obtained product was investigated by X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FE-SEM), ultraviolet–visible (UV–Vis) spectrum and photoluminescence (PL) spectrum. The length and width of the CdS nanorods were in the range of 1–2 μm, 30–40 nm, respectively. XRD analysis revealed that the crystal structure of the product was hexagonal phase. Photoluminescence measurement showed that the nanobelts have two main emission bands around 470 and 560 nm, which should come from the higher-level transition and the intrinsic transition, respectively.  相似文献   

15.
Ln(OH)3 (Ln=La, Pr, Nd, Sm, Eu, Gd) nanorods are synthesized without using any surfactants or templates at room temperature. The as-obtained nanorods are within 4–25 nm in diameter and up to 200 nm in length. The most important improvement is that the aspect ratio of the obtained nanorods can be effectively controlled by adjusting the reaction time and pH value of the reaction system. The as-synthesized nanorods are characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It is interesting to find that both the inherent crystal structure of light lanthanide hydroxide and the chemical potential affect the formation of nanorods. The photoluminescence (PL) instrument is used to investigate the optical properties of the Eu(OH)3 nanorods and its abnormal luminescence behaviors are observed.  相似文献   

16.
CoxZn1-x nanorod arrays were fabricated by electrodeposition in porous anodic aluminum oxide templates at different electric potentials. X-ray diffraction and transmission electron microscopy indicate that highly-ordered and uniform nanorods have been fabricated. The amounts of Co and Zn contents are investigated using energy dispersive spectroscopy, which demonstrates that the atom ratio of the alloy nanorods changes with the deposition potential. In addition, magnetic measurements show that the magnetic isotropy Co-rich CoZn nanorods will change to magnetic anisotropy nanorods with the easy axis parallel to the rod long axis with decreasing Co content.  相似文献   

17.
We report on the one-step synthesis of ultra narrow wurtzite CdS nanorods using bench top chemical decomposition route. The synthesized CdS nanorods are of 1.8 nm in diameter and show major confinement along the radial dimension, which is well below the exciton Bohr radius of bulk CdS (2.5 nm). Structural and self-assembly properties of nanorods are studied using X-ray Diffraction (XRD) and small angle X-ray scattering (SAXS) measurements, which reveal preferred orientation of the nanorods along <00.2> direction with 2D supercrystalline spatial distribution. The estimated nanorod dimensions from XRD is corroborated with the transmission electron microscopy observations. UV–vis and photoluminescence spectroscopy reveals significant increase in the band gap in comparison to bulk CdS which is further tallied with the simulations using effective mass approximation (EMA). Formation of discrete structure of valence band and conduction band due to strongly quantum confined excitons in the radial direction is evidenced from EMA simulation. Combination of experimental and theoretical approach helps in understanding the structure–property relationship for ultranarrow CdS rods which might lead to nanorod based applications.  相似文献   

18.
汤洋 《发光学报》2020,(5):571-578
为在新型太阳能电池等光电器件中应用ZnO纳米结构,需要对ZnO纳米结构阵列的几何形貌及光电物理性质进行裁剪与操控。采用电化学沉积路线制备ZnO纳米柱阵列,In(NO3)3与NH4NO3两种盐类被溶入在传统Zn(NO3)2主电解液中。对ZnO纳米柱阵列进行扫描电子显微镜、透射反射光谱、光致发光光谱测试,分析其形貌与光电物理性质。随着引入的In(NO3)3浓度的增加,ZnO纳米柱阵列的平均直径随之由57 nm减小至30 nm。同时ZnO纳米柱的阵列密度也可降低,进而增大纳米柱间距至41 nm。由于新的盐类的引入,ZnO纳米柱的光学带隙由3.46 eV蓝移至3.55 eV。随着电解液中In(NO3)3的增加,ZnO纳米柱的斯托克斯位移由198 meV减小至154 meV,ZnO纳米柱中的非辐射复合可以得到一定程度的抑制。通过在主电解液中引入In(NO3)3与NH4NO3两种盐类,可对ZnO纳米柱的直径、密度、间距、透射反射率、光学带隙、近带边发射与非辐射复合进行操控与裁剪。  相似文献   

19.
刘佳  徐玲玲  张海霖  吕威  朱琳  高红  张喜田 《物理学报》2012,61(2):27802-027802
通过简单的水热合成路线,在没有模板、表面活性剂的作用和未处理的基底上合成出铝掺杂ZnO 纳米盘,并以纳米盘为基底自组装合成了ZnO纳米棒阵列.扫描电镜(SEM)观察到铝掺杂ZnO纳米盘的厚度为 200 nm,纳米盘的尺寸约为2 μm;纳米棒的直径约为150 nm,长约1.5 μm.通过不同生长阶段的形貌变化探讨了ZnO纳米结构的形成机理,表明自组装过程存在两个成核阶段.另外, 研究了铝离子掺杂对样品光致发光性质的影响.  相似文献   

20.
Zinc sulfide nanorods with good photoluminescence have been successfully fabricated using a simple sol-gel process via ultrasonication, with mercaptoethanol as capping agent. The formation of ZnS nucleation, followed by subsequent growth, is significant in obtaining highly oriented ZnS nanorods. Temperature, time, and capping agent also proved to be significant factors in the growth of ZnS nanorods and greatly affect their photo luminescent properties. X-ray diffraction (XRD) analysis, low and high-resolution transmission electron microscopy (TEM & HRTEM), selected-area electron diffraction (SAED) pattern, and scanning electron microscopy (SEM) indicated that the ZnS nanorods were single crystal in nature and that they had grown up preferentially along the [0001] direction. This simple method of nucleation, followed by their successive growth, resulted in the development of an effective and low-cost fabrication process for high-quality ZnS nanorods with good photo luminescent properties that can be applied to luminescent sensors and optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号