首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, we apply two different techniques on nonlinear complex fractional nonlinear Schrödinger equation which is a very important model in fractional quantum mechanics. Nonlinear Schrödinger equation is one of the basic models in fibre optics and many other branches of science. We use the conformable fractional derivative to transfer the nonlinear real integer-order nonlinear Schrödinger equation to nonlinear complex fractional nonlinear Schrödinger equation. We apply new auxiliary equation method and novel \(\left( {G'}/{G}\right) \)-expansion method on nonlinear complex fractional Schrödinger equation to obtain new optical forms of solitary travelling wave solutions. We find many new optical solitary travelling wave solutions for this model. These solutions are obtained precisely and efficiency of the method can be demonstrated.  相似文献   

2.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

3.
Andrey I Maimistov 《Pramana》2001,57(5-6):953-968
The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modified Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation. Sine-Gordon equation, the reduced Maxwell-Bloch equation. Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.  相似文献   

4.
The effect of phonon unharmonism and nonlinearity in exchange integrals on soliton excitations in ferromagnetic chains in the classical and long-wave limit are studied. It has been first shown that the unharmonic effect leads to a system of coupled Boussinesque and nonlinear Schrödinger equations allowing two types of soliton solutions. The nonlinear effect on the other hand results nonlinear Schrödinger equation with saturable nonlinearity admitting stable solitons in higher dimensional models.  相似文献   

5.
Jun-Rong He  Lin Yi  Hua-Mei Li 《Physics letters. A》2013,377(34-36):2034-2040
We construct explicit novel solutions of the nonlinear Schrödinger equation with spatiotemporal modulation of the nonlinearities and potentials. By using a modified similarity transformation we explore some localized nonlinearities and combined time-dependent magnetic–optical potentials in the form of linear-lattice ones and harmonic-lattice ones. Several families of exact localized nonlinear wave solutions in terms of Mathieu and elliptic functions corresponding to these potentials are then studied, such as snakelike solitons and breathing solitons. The stability of the obtained localized nonlinear wave solutions is investigated numerically such that some stable solutions are found.  相似文献   

6.
刘晓蓓  李彪 《中国物理 B》2011,20(11):114219-114219
We present three families of soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with distributed coefficients. We investigate the dynamics of these solitons in nonlinear optics with some selected parameters. Different shapes of bright solitons, a train of bright solitons and dark solitons are observed. The obtained results may raise the possibilities of relevant experiments and potential applications.  相似文献   

7.
In this article, we retrieve optical soliton solutions of the perturbed time fractional resonant nonlinear Schrödinger equation having competing weakly nonlocal and full nonlinearity. We study the equation for two different forms of nonlinearity, namely Kerr law and anti-cubic law. The F-expansion method along with fractional complex transformation is used to obtain the optical solitons. Moreover, the existence of these solitons are guaranteed with the constraint relations between the model coefficients and the traveling wave frequency coefficient.  相似文献   

8.
《中国物理 B》2021,30(10):104206-104206
The soliton solution and collapse arrest are investigated in the one-dimensional space-fractional Schr?dinger equation with Kerr nonlinearity and optical lattice. The approximate analytical soliton solutions are obtained based on the variational approach, which provides reasonable accuracy. Linear-stability analysis shows that all the solitons are linearly stable. No collapses are found when the Lévy index 1 α≤ 2. For α = 1, the collapse is arrested by the lattice potential when the amplitude of perturbations is small enough. It is numerically proved that the energy criterion of collapse suppression in the two-dimensional traditional Schr?dinger equation still holds in the one-dimensional fractional Schr?dinger equation. The physical mechanism for collapse prohibition is also given.  相似文献   

9.
An exact (2 + 1)-dimensional spatial optical soliton of the nonlinear Schrödinger equation with a spatially modulated nonlinearity and a special external potential is discovered in an inhomogeneous nonlinear medium, by utilizing the similarity transformation. Exact analytical solutions are constructed by the products of Whittaker functions and the bright and dark soliton solutions of the standard stationary nonlinear Schrödinger equation. Some examples of such composed solutions are given, in which these spatial solitons display different localized structures. Numerical calculation shows that the soliton is stable in propagating over long distances, thus also confirming the validity of the exact solution.  相似文献   

10.
Localized wave solutions, often referred to as solitary waves or solitons, are important classes of solutions in nonlinear optics. In optical communications, weakly nonlinear, quasi-monochromatic waves satisfy the “classical” and the “dispersion-managed” nonlocal nonlinear Schrödinger equations, both of which have localized pulses as special solutions. Recent research has shown that mode-locked lasers are also described by similar equations. These systems are variants of the classical nonlinear Schrödinger equation, appropriately modified to include terms which model gain, loss and spectral filtering that are present in the laser cavity. To study their remarkable properties, a computational method is introduced to find localized waves in nonlinear optical systems governed by these equations.  相似文献   

11.
Symmetry breaking bifurcations of solitons are investigated in framework of a nonlinear fractional Schrödinger equation (NLFSE) with competing cubic-quintic nonlinearity. Some prototypical characteristics of the symmetry breaking, featured by transformations of symmetric and antisymmetric soliton families into asymmetric ones, are found. Stable asymmetric solitons emerge from unstable symmetric and antisymmetric ones by way of two different symmetry breaking scenarios. A twisting branch, featured with double loops bifurcation, bifurcates off from the base branch of symmetric soliton solutions and crosses it, then merges into the base branch driven by the competitive nonlinear effect. A supercritical pitchfork bifurcation is bifurcated from the branch of antisymmetric soliton solutions and gives rise to a supercritical pitchfork bifurcation. Stability of the soliton families is explored by linear stability analysis. With the increase of the Lévy index, stability region induced by the twisting loops bifurcation is expanded. However, stability region of the pitchfork bifurcation is shrunk on the parameter plane of the Lévy index and the soliton power.  相似文献   

12.
Under investigation in this work is a (\(2+1\))-dimensional the space–time fractional coupled nonlinear Schrödinger equations, which describes the amplitudes of circularly-polarized waves in a nonlinear optical fiber. With the aid of conformable fractional derivative and the fractional wave transformation, we derive the analytical soliton solutions in the form of rational soliton, periodic soliton, hyperbolic soliton solutions by four integration method, namely, the extended trial equation method, the \(\exp (-\,\Omega (\eta ))\)-expansion method and the improved \(\tan (\phi (\eta )/2)\)-expansion method and semi-inverse variational principle method. Based on the the extended trial equation method, we derive the several types of solutions including singular, kink-singular, bright, solitary wave, compacton and elliptic function solutions. Under certain condition, the 1-soliton, bright, singular solutions are driven by semi-inverse variational principle method. Based on the analytical methods, we find that the solutions give birth to the dark solitons, the bright solitons, combine dark-singular, kink, kink-singular solutions with fractional order for nonlinear fractional partial differential equations arise in nonlinear optics.  相似文献   

13.
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable-coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.  相似文献   

14.
拉曼增益对孤子传输特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用考虑拉曼增益效应的非线性薛定谔方程, 在忽略光纤损耗的情况下, 采用基于MATLAB的分步傅里叶数值算法, 得出线性算符和非线性算符具体的表达式, 分步作用于光孤子脉冲传输方程, 仿真模拟了光孤子在光纤中传输时的演变. 与不考虑拉曼增益的光孤子在光纤中传输相对比, 探析了拉曼增益对孤子传输特性的影响.拉曼增益会破坏孤子的传输周期, 导致孤子在光纤中传输时快速衰减, 并且影响程度和输入孤子的脉冲峰值功率大小有关, 拉曼增益对基态孤子和高阶孤子的影响也不相同. 关键词: 拉曼增益 孤子 对称分步傅里叶法 非线性薛定谔方程  相似文献   

15.
潘楠  黄平  黄龙刚  雷鸣  刘文军 《物理学报》2015,64(9):90504-090504
由于变系数非线性Schrödinger方程的增益、色散和非线性项都是变化的, 根据方程这一特点可以研究光脉冲在非均匀光纤中的传输特性. 本文利用Hirota方法, 得到非线性Schrödinger方程的解析暗孤子解. 然后根据暗孤子解对暗孤子的传输特性进行讨论, 并且分析各个物理参量对暗孤子传输的影响. 经研究发现, 通过调节光纤的损耗、色散和非线性效应都能有效的控制暗孤子的传输, 从而提高非均匀光纤中的光脉冲传输质量. 此外, 本文还得到了所求解方程的解析双暗孤子解, 最后对两个暗孤子相互作用进行了探讨. 本文得到的结论有利于研究非均匀光纤中的孤子控制技术.  相似文献   

16.
In this work, we study the stability and internal modes of one-dimensional gap solitons employing the modified nonlinear Schrödinger equation with a sinusoidal potential together with the presence of a weak nonlocality. Using an analytical theory, it is proved that two soliton families bifurcate out from every Bloch-band edge under self-focusing or self-defocusing nonlinearity, and one of these is always unstable. Also we study the oscillatory instabilities and internal modes of the modified nonlinear Schrödinger equation.  相似文献   

17.
Dark bound solitons and soliton chains without interactions are investigated for the higher-order nonlinear Schrödinger (HNLS) equation, which can model the propagation of the femtosecond optical pulse under some physical situations in nonlinear fiber optics. Via the modulation of parameters for the analytic solutions, different types of dark bound solitons and soliton chains can be derived for the HNLS equation. In addition, stabilities of those structures are checked through numerical simulations. Our discussions are expected to be helpful in interpreting those new structures, and applied to the long-distance transmission of the femtosecond pulses in optical fibers.  相似文献   

18.
The two-dimensional stability of nonlinear wave and soliton solutions of the exponentially nonlinear Schrödinger equation is examined. All stationary entities are unstable to two-dimensional perturbations. It is found that the saturable nonlinearity decreases growth rates in comparison with the small amplitude limit.  相似文献   

19.
We present the results of numerical study of the evolution of wave packets and envelope soliton interaction in terms of the third-order nonlinear Schrödinger equation. It is shown that an arbitrary initial pulse evolves to a few solitons and a linear quasiperiodic wave. The interaction of solitons is accompanied by the radiation of part of the wave field in the form of a linear quasiperiodic wave from the interaction region, amplification of the soliton with larger amplitude and attenuation of the soliton with smaller amplitude.  相似文献   

20.
Integral form of the space-time-fractional Schrödinger equation for the scattering problem in the fractional quantum mechanics is studied in this paper. We define the fractional Green’s function for the space-time fractional Schrödinger equation and express it in terms of Fox’s H-function and in a computable series form. The asymptotic formula of the Green’s function for large argument is also obtained, and applied to study the fractional quantum scattering problem. We get the approximate scattering wave function with correction of every order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号