首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the high efficiency of solar pumped laser. The sunlight is concentrated by the concentrator system, which is composed by the Fresnel lens and the cone-channel condenser. The power density of sunlight concentrated by the concentrator system surpasses the lasing threshold for pumping laser. In the experiment, the sunlight concentrated is coupled into the conical chamber pumping Nd:YAG laser media. Laser output of 3.5 W has been achieved; the collect efficiency is 3.5 W/m2. The conversion efficiency is 1.0% from solar power into laser, and the slope efficiency is achieved 1.86%.  相似文献   

2.
Combining the advantages of diode-end-pumped Nd: YVO4 and diode-side-pumped Nd: YAG amplifiers, a high average power and high beam quality picosecond laser is designed. The system delivers a picosecond laser with average power of 43.4 W and good beam quality of M2 < 1.7. By focusing the high power picosecond laser in LBO crystal, 532 nm green laser with maximal power of 20.8 W is generated and the conversion efficiency of second-harmonic generation reaches 56.4% when 17.7 W green laser obtained from the fundamental frequency laser with power of 31.4 W and beam quality of M2 < 1.25.  相似文献   

3.
Solar-pumped solid-state lasers are promising for renewable extreme-temperature material processing. Here we report a large improvement in solar laser beam brightness by pumping a thin Nd:YAG single crystal rod. A fused silica light guide of 14 mm×22 mm rectangular cross-section is used to both transmit and homogenize the concentrated solar radiation from the focal zone of a 2.88 m2 parabolic mirror to the entrance aperture of a modified 2D-CPC flooded pump cavity, within which a 4 mm diameter rod is efficiently pumped. 2.2% slope efficiency is reached. Laser beam brightness figure of merit B is three times higher than that of the most recent solar-pumped Nd:YAG laser by a Fresnel lens. The introduction of the rectangular cross-section light guide has also ensured a much more stable laser emission than previous pumping schemes.  相似文献   

4.
We reported the Ho:GdVO4 laser pumped by Tm-doped laser with a fiber Bragg grating. 2.03 W continuous-wave Ho:GdVO4 laser output power is obtained under 10.5 W incident pump power, with the optical-to-optical conversion efficiency and slope efficiency of 19.3% and 32.3%, respectively, at 7 °C. We can see that, the lower the temperature is, the better the laser output character is. The beam quality factor is M2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

5.
An active Q-switched diode-end-pumped Nd:YAG laser is reported with 2.9 W output power on the 4F3/2 → 4I9/2 transitions at a pump power of 24 W. With intracavity frequency doubling using a 20-mm-long LBO, a maximum blue output power of 2.25 W is achieved at a repetition rate of 23 kHz. The conversion efficiency from the corresponding Q-switched fundamental output to blue output is 96%. The peak power of the Q-switched blue pulse is up to 610 W with 160 ns pulse width. The fluctuation of the blue output power is less than 4.0% at the maximum output power.  相似文献   

6.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

7.
The continuous-wave (cw) and passive Q-switching operation of a diode-end-pumped gadolinium gallium garnet doped with neodymium (Nd:GGG) laser at 1062 nm was realized. A maximum cw output power of 6.9 W was obtained. The corresponding optical conversion efficiency was 50.9%, and the slope efficiency was determined to be 51.4%. By using Cr4+:YAG crystals as saturable absorbers, Q-switching pulse with average output power of 1.28 W, pulse width of 4 ns and repetition rate of 6.2 kHz were obtained. The single-pulse energy and peak power were estimated to be 206 μJ and 51.6 kW, respectively. The conversion efficiency of the output power from cw to Q-switching operation was as high as 84.7%.  相似文献   

8.
A high average power picosecond laser amplification system with diode-end-pumped Nd:YVO4 and diode-side-pumped Nd:YAG is described. Laser with power up to 92.7 W, repetition frequency of 73.3 MHz, pulse duration of 26.5 ps, and beam quality of M2 < 3.5 is generated in the amplification system. Thermal-birefringence-induced depolarization in the Nd:YAG rod laser head amplifier is measured to be 21.9 W though birefringence compensation is performed.  相似文献   

9.
A dual-wavelength laser at 1064 nm and 1319 nm is obtained by a single Nd:YAG crystal rod. On the basis of 1064 nm and 1319 nm dual-wavelength laser installation, the second harmonic waves at 532 nm and 660 nm can be achieved by using non-linear frequency conversion technology. When 1064 nm and 1319 nm lasers oscillate simultaneously, the maximum output power is 30.5 W and 8.78 W, respectively. When the 1319 nm laser is restrained, we obtain a 35.6 W maximum output power at 1064 nm and by contrary 11.2 W at 1319 nm. The maximum output powers of 532 nm and 660 nm lasers are 5.34 W and 1.353 W when oscillating simultaneously. With one of them restrained, the maximum output power is 6.72 W at 532 nm and 1.90 W at 660 nm. The optimum repetition rate of the acousto-optic Q-switch is 10.5 KHz and 20.5 KHz for 532 nm and 660 nm lasers, respectively. The optical-to-optical conversion efficiency from the fundamental waves to the harmonic waves is 17.5% and 15.4%. The instability is less than 2%.  相似文献   

10.
A laser diode pumped actively Q-switched Nd:GdVO4 self-Raman laser operating at 1173 nm is presented. The maximum output power was 2.26 W at an incident pump power of 18 W, with the corresponding optical conversion efficiency of 12.6%. Two different resonator configurations were investigated in order to achieve high output power and efficiency.  相似文献   

11.
Using 1064 nm CW Nd:YVO4 solid-state laser as a pump, 1-km phosphosilicate fiber and cascaded cavities with two pairs of fiber Bragg grating mirrors for 1239 and 1484 nm, we obtained a CW 800 mW/1484 nm Raman fiber laser (RFL) for an actual incident pump power of about 2 W (Nd:YVO4 power of 6.90 W). The conversion efficiency is as high as 40%. To the best of our knowledge, this is the highest conversion efficiency of RFL pumped by solid-state laser. The output power instability at 1484 nm in half an hour is less than 3%. In addition, the numerical simulations are also performed. Good agreement between the results of numerical simulation and the results of the experiment has been demonstrated.  相似文献   

12.
A high power dynamic fundamental mode Nd:YAG laser is experimentally demonstrated with a stagger-pumped laser module and a V-shaped resonator. The rod is pumped symmetrically by staggered bar modules. And dynamic fundamental mode is achieved under different pump levels. The maximal continuous wave (CW) output of 124 W (M2=1.4) is achieved with a dual rod. Average output of 112 W, pulse width of 120 ns, pulse energy of 11.2 mJ and peak power of 93 kW are obtained in Q-switched operation of 10 kHz.  相似文献   

13.
A diode-pumped passively Q-switched Nd:YAG/SrWO4/KTP yellow laser is presented for the first time. As high as 1.02 W average output power was obtained at a pump power of 14.0 W with a pulse repetition frequency of 21.9 kHz and the corresponding diode-to-yellow conversion efficiency was 7.29%. The highest pulse energy of 56.2 μJ was obtained at a pump power of 7.2 W.  相似文献   

14.
Highly efficient continuous wave (CW) green beam generation by intracavity frequency doubling of a diode side-pumped Nd:YAG laser using a single pump head based on a copper-coated flow tube in a V-shaped cavity geometry has been demonstrated. A maximum 30.5 W of CW green power was obtained at a total diode pumping power of 260 W corresponding to 11.7% conversion efficiency of diode pump power to CW green power and 4.7% conversion efficiency of electrical power to CW green power. The performance of the laser by considering the pump power induced thermal lensing effect and the M2-parameter at the fundamental wavelength has been analyzed.  相似文献   

15.
We demonstrate a compact high-power passively mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate by 880 nm diode direct-in-band pumping. At the absorbed pump power of 19.9 W, a stable mode-locked output power of 7.8 W was obtained with the pulse width of 21.4 ps and a beam quality factor of M2 < 1.5, corresponding to an optical-optical conversion efficiency of 39.2%.  相似文献   

16.
High efficiency single layer blue phosphorescent organic light-emitting diodes (PHOLEDs) without any charge transport layer were developed. A mixed host of spirobifluorene based phosphine oxide (SPPO13) and 1, 1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) was used as the host in the emitting layer. A high maximum external quantum efficiency of 15.8% and a quantum efficiency of 8.6% at 1000 cd/m2 were achieved in the single-layer blue PHOLEDs without any charge transport layer. The maximum power efficiency and power efficiency at 1000 cd/m2 were 31.4 and 16.9 lm/W, respectively.  相似文献   

17.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

18.
A compact folded three-mirror cavity with length of 100 mm is optimized to obtain high efficient 457 nm laser. When the incident pump power into Nd:YVO4 is 16.3 W, as high as 1.52 W continuous wave 457 nm blue laser is achieved by LBO intracavity frequency doubled. The optical-to-optical conversion efficiency is greater than 9.3%.  相似文献   

19.
We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6 W was obtained with an optical-to-optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M2 beam quality factor of 18.7 was obtained at the maximum laser output power.  相似文献   

20.
Q. Liu  H. Chen  X. Yan  M. Gong 《Optics Communications》2011,284(13):3383-3386
A high power, high beam quality, compact green laser based on dual-rod AO Q-switched resonator was designed, fabricated and tested. The laser provided a maximum 532 nm average power of 36.5 W at a repetition rate of 65 kHz with the beam quality factor of M2 = 1.55 and the optical frequency conversion efficiency from NIR to green laser was as high as 51%. The pulse repetition rate was tunable from 50 kHz to 200 kHz and the overall dimension of the laser was within 500 × 300 × 150 mm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号