首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this study, current-voltage (I-V) and capacitance-voltage (C-V) characteristics of metal-semiconductor (MS) Zn/p-Si and Sn/p-Si Schottky diodes, with high resistivity silicon structures, are investigated. The parameters of series resistance (RS), the ideality factor (n) and the barrier height (Φb) are determined by performing different plots from the forward bias current-voltage (I-V) and reverse bias capacitance-voltage (C-V) characteristics. Thus, the barrier heights (Φb) for the Si Schottky diodes obtained between 0.725 and 1.051 eV, the ideality factor (n) between 1.043 and 1.309, and the series resistance (RS) between 12.594 and 12.950 kΩ. The energy distribution of interface states density was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. It was concluded that the density of interface states in the considered energy range are in close agreement with each other values obtained for Zn/p-Si and Sn/p-Si Schottky diodes.  相似文献   

2.
The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (Al/Si3N4/p-Si) Schottky barrier diodes (SBDs) were measured in the temperature range of 80-300 K. By using the thermionic emission (TE) theory, the zero-bias barrier height ΦB0 calculated from I-V characteristics was found to increase with increasing temperature. Such temperature dependence is an obvious disagreement with the negative temperature coefficient of the barrier height calculated from C-V characteristics. Also, the ideality factor decreases with increasing temperature, and especially the activation energy plot is nonlinear at low temperatures. Such behaviour is attributed to Schottky barrier inhomogeneties by assuming a Gaussian distribution of barrier heights (BHs) at interface. We attempted to draw a ΦB0 versus q/2kT plot to obtain evidence of a Gaussian distribution of the BHs, and the values of ΦBo = 0.826 eV and αo = 0.091 V for the mean barrier height and standard deviation at zero-bias, respectively, have been obtained from this plot. Thus, a modified ln(Io/T2) − q2σo2/2(kT)2 versus q/kT plot gives ΦB0 and Richardson constant A* as 0.820 eV and 30.273 A/cm2 K2, respectively, without using the temperature coefficient of the barrier height. This value of the Richardson constant 30.273 A/cm2 K2 is very close to the theoretical value of 32 A/cm2 K2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/Si3N4/p-Si Schottky barrier diodes can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights. In addition, the temperature dependence of energy distribution of interface state density (NSS) profiles was determined from the forward I-V measurements by taking into account the bias dependence of the effective barrier height and ideality factor.  相似文献   

3.
The variation in electrical characteristics of Au/n-Ge (1 0 0) Schottky contacts have been systematically investigated as a function of temperature using current–voltage (IV) measurements in the temperature range 140–300 K. The IV characteristics of the diodes indicate very strong temperature dependence. While the ideality factor n decreases, the zero-bias Schottky barrier height (SBH) (ΦB) increases with the increasing temperature. The IV characteristics are analyzed using the thermionic emission (TE) model and the assumption of a Gaussian distribution of the barrier heights due to barrier inhomogeneities at the metal–semiconductor interface. The zero-bias barrier height ΦB vs. 1/2 kT plot has been used to show the evidence of a Gaussian distribution of barrier heights and values of ΦB=0.615 eV and standard deviation σs0=0.0858 eV for the mean barrier height and zero-bias standard deviation have been obtained from this plot, respectively. The Richardson constant and the mean barrier height from the modified Richardson plot were obtained as 1.37 A cm−2 K−2 and 0.639 eV, respectively. This Richardson constant is much smaller than the reported of 50 A cm−2 K−2. This may be due to greater inhomogeneities at the interface.  相似文献   

4.
Temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60-300 K. The room temperature values for the zero bias barrier height from the I-V measurements (ΦI-V) was found to be 0.52 eV and from the C-V measurements (ΦC-V) as 3.83 eV. From the temperature dependence of forward bias I-V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The C-V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60-120 K and 140-300 K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31 eV below the conduction band and defect concentration of between 4×1016 and 6×1016 cm−3 that traps carriers, influencing the determination of the barrier height.  相似文献   

5.
The forward bias current-voltage (I-V) characteristics of Al/p-Si (MS) Schottky diodes with native insulator layer were measured in the temperature range of 80-300 K. The obtained zero bias barrier height ΦB0(I-V), ideality factor (n) and series resistance (Rs) determined by using thermionic emission (TE) mechanism show strong temperature dependence. There is a linear correlation between the ΦB0(I-V) and n because of the inhomogeneties in the barrier heights (BHs). Calculated values from temperature dependent I-V data reveal an unusual behaviour such that the ΦB0 decreases, as the n and Rs values are increasing with decreasing absolute temperature, and these changes are more pronounced especially at low temperatures. Such temperature dependence of BH is contradictory with the reported negative temperature coefficient of the barrier height. In order to explain this behaviour we have reported a modification in the expression reverse saturation current Io including the n and the tunnelling factor (αΧ1/2δ) estimated to be 15.5. Therefore, corrected effective barrier height Φbef.(I-V) versus temperature has a negative temperature coefficients (α = −2.66 × 10−4 eV/K) and it is in good agreement with negative temperature coefficients (α = −4.73 × 10−4 eV/K) of Si band gap. In addition, the temperature dependent energy distribution of interface states density Nss profiles was obtained from the forward bias I-V measurements by taking into account the bias dependence of the Φe and n. The forward bias I-V characteristics confirm that the distribution of Nss, Rs and interfacial insulator layer are important parameters that the current conduction mechanism of MS Schottky diodes.  相似文献   

6.
The current-voltage (I-V) characteristics of Al/p-Si Schottky barrier diodes (SBDs) with native insulator layer were measured in the temperature range of 150-375 K. The estimated zero-bias barrier height ΦB0 and the ideality factor n assuming thermionic emission (TE) theory show strong temperature dependence. Evaluation of the forward I-V data reveals an increase of zero-bias barrier height ΦB0 but decrease of ideality factor n with increase in temperature. The conventional Richardson plot exhibits non-linearity below 250 K with the linear portion corresponding to activation energy of 0.41 eV and Richardson constant (A*) value of 1.3 × 10−4 A cm−2 K−2 is determined from intercept at the ordinate of this experimental plot, which is much lower than the known value of 32 A cm2 K2 for holes in p-type Si. Such behavior is attributed to Schottky barrier inhomogene ties by assuming a Gaussian distribution of barrier heights (BHs) due to barrier height inhomogeneities that prevail at interface. Also, ΦB0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of ΦB0 = 1.055 eV and σ0 = 0.13 V for the mean BH and zero-bias standard deviation have been obtained from this plot, respectively. Thus, the modified versus q/kT plot gives ΦB0 and A* as 1.050 eV and 40.08 A cm−2 K−2, respectively, without using the temperature coefficient of the barrier height. This value of the Richardson constant 40.03 A cm−2 K−2 is very close to the theoretical value of 32 A K−2 cm−2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/p-Si Schottky barrier diodes with native insulator layer can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights.  相似文献   

7.
The current-voltage (I-V) characteristics of Sn/p-Si Schottky barrier diode have been measured over a wide range of temperature (80-300 K) and interpreted on the basis of thermionic emission mechanism by merging the concept of barrier inhomogeneities through a Gaussian distribution function. The analysis has revealed an anomalous decrease of apparent barrier height Φb0, increase of ideality factor n, and nonlinearity of the activation energy plot at lower temperatures. A Φb0 versus 1/T plot has been drawn to obtain evidence of a Gaussian distribution of barrier heights, and values of 0.97 eV and 0.084 V for the mean barrier height and standard deviation σ0 have been obtained, respectively, from this plot. A modified ln(I0/T2)−(q2σ02/2k2T2) versus 1/T plot gives and Richardson constant A** as 0.95 eV and 15.6 A cm−2 K−2, respectively. It can be concluded that the temperature dependent I-V characteristics of the Sn/p-Si Schottky barrier diode can be successfully explained on the basis of a thermionic emission mechanism with Gaussian distribution of the barrier heights. We have also discussed whether or not the junction current has been connected with thermionic field-emission mechanism.  相似文献   

8.
The current-voltage (I-V) characteristics of Al/SiO2/p-Si metal-insulator-semiconductor (MIS) Schottky diodes were measured at room temperature. In addition the capacitance-voltage (C-V) and conductance-voltage (G-V) measurements are studied at frequency range of 10 kHz-1 MHz. The higher value of ideality factor of 3.25 was attributed to the presence of an interfacial insulator layer between metal and semiconductor and the high density of interface states localized at Si/SiO2 interface. The density of interface states (Nss) distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) at room temperature for the Schottky diode on the order of ≅4 × 1013 eV−1 cm−2. These high values of Nss were responsible for the non-ideal behaviour of I-V and C-V characteristics. Frequency dispersion in C-V and G-V can be interpreted only in terms of interface states. The Nss can follow the ac signal especially at low frequencies and yield an excess capacitance. Experimental results show that the I-V, C-V and G-V characteristics of SD are affected not only in Nss but also in series resistance (Rs), and the location of Nss and Rs has a significant on electrical characteristics of Schottky diodes.  相似文献   

9.
A study on interface states density distribution and characteristic parameters of the In/SiO2/p-Si (MIS) capacitor has been made. The thickness of the SiO2 film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 Å. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 Ω and 0.592 eV, respectively. The energy distribution of the interface state density Dit was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44×1013 eV−1 cm−2 in 0.329-Ev eV to 1.11×1013 eV−1 cm−2 in 0.527-Ev eV at room temperature. Furthermore, the values of interface state density Dit obtained by the Hill-Coleman method from the C-V characteristics range from 52.9×1013 to 1.11×1013 eV−1 cm−2 at a frequency range of 30kHz-1 MHz. These values of Dit and Rs were responsible for the non-ideal behaviour of I-V and C-V characteristics.  相似文献   

10.
TlInSe2 single crystal has been successfully prepared by the Bridgman crystal growth technique. The crystal, which exhibits compositional atomic percentages of 25.4%, 25.2% and 49.4% for Tl, In and Se, respectively, is found to be of tetragonal structure with lattice parameters of a=0.8035 and c=0.6883 nm. The crystals were used to design radio frequency sensitive varactor device. The temperature dependence of the current-voltage characteristics of the device allowed the calculation of the room temperature barrier height and ideality factor as 0.87 eV and as 3.2, respectively. Rising the device temperature increased the barrier height and decreased the ideality factor. This behavior was attributed to the current transport across the metal-semiconductor interface. The capacitance of the device is observed to increase with increasing voltage and increasing temperature as well. The temperature activation of the capacitance starts above 82 °C with a temperature coefficient of capacitance being 1.08×10−3 K−1. Furthermore, the capacitance of the device was observed to increase with increasing frequency up to a maximum critical frequency of 4.0 kHz, after which the capacitance decreased with increasing frequency. The behavior reflected the ability of maximum amount of charge holding being at a 4.0 kHz. The analysis of the capacitance-voltage characteristics at fixed frequencies reflected a frequency dependent barrier height and acceptors density. The decrease in the barrier height and acceptors density with increasing frequency is mainly due to the inability of the free charge to follow the ac signal.  相似文献   

11.
Electronic and interface state distribution properties of Ag/p-Si Schottky diode have been investigated. The diode indicates non-ideal current-voltage behavior with an ideality factor greater than unity. The capacitance-voltage (C-V) characteristic is linear in reverse bias indicating rectification behavior and charge density within depletion layer is uniform. From I-V and C-V characteristics, junction parameters such as diode ideality factor and barrier height were found as 1.66 and ?B(I-V) = 0.84 eV (?B(C-V) = 0.90 eV), respectively. The interface state density Nss and relaxation time τ of the Schottky diode were determined by means of Schottky capacitance spectroscopy method. The results show the presence of thin interfacial layer between the metal and semiconductor.  相似文献   

12.
Electrical transport properties of Ag metal-fluorescein sodium salt (FSS) organic layer-silicon junction have been investigated. The current-voltage (I-V) characteristics of the diode show rectifying behavior consistent with a potential barrier formed at the interface. The diode indicates a non-ideal I-V behavior with an ideality factor higher than unity. The ideality factor of the Ag/FSS/p-Si diode decreases with increasing temperature and the barrier height increases with increasing temperature. The barrier height (φb=0.98 eV) obtained from the capacitance-voltage (C-V) curve is higher than barrier height (φb=0.72 eV) derived from the I-V measurements. The barrier height of the Ag/FSS/p-Si Schottky diode at the room temperature is significantly larger than that of the Ag/p-Si Schottky diode. It is evaluated that the FSS organic layer controls electrical charge transport properties of Ag/p-Si diode by excluding effects of the SiO2 residual oxides on the hybrid diode.  相似文献   

13.
Metal-oxide-semiconductor (MOS) capacitors incorporating hafnium dioxide (HfO2) dielectrics were fabricated and investigated. In this work, the electrical and interfacial properties were characterized based on capacitance-voltage (C-V) and current-voltage (I-V) measurements. Thereafter the current conduction mechanism, electron effective mass (m*), mean density of interface traps per unit area and energy (), energy distribution of interface traps density and near-interface oxide traps density (NNIOT) were studied in details. The characterization reveals that the dominant conduction mechanism in the region of high temperature and high field is Schottky emission. The mean density of interface traps per unit area and energy is about 6.3 × 1012 cm−2 eV−1 by using high-low frequency capacitance method. The maximum Dit is about 7.76 × 1012 cm−2 eV−1 located at 0.27 eV above the valence band.  相似文献   

14.
Metal-oxide-semiconductor capacitors (MOSCs) and metal-oxide-semiconductor field-effect transistors (MOSFETs) incorporating hafnium silicate (Hf-silicate) dielectrics were fabricated by using atomic layer deposition (ALD). The electrical properties of these Hf-silicate thin films with various postnitridation annealing (PNA) temperatures were then examined to find the best nitridation condition. It is found that the best conditions to achieve the lowest gate leakage current and best equivalent oxide thickness (EOT) are when PNA is performed at 800 °C in NH3 ambient for 60 s. To understand the obtained film, carrier transportation mechanisms, the temperature dependence of the leakage current was measured from 300 K to 500 K for both gate injection and substrate injection. The result reveals that the leakage mechanisms involve Schottky emission at high temperature and low electrical field and Poole-Frenkle emission at low temperature and high electrical field. The barrier heights of poly-Si/Hf-silicate and Hf-silicate/Si interfaces extracted from Schottky emission are 1.1 eV and 1.04 eV, respectively. The interface traps per unit area, the mean density of interface traps per area and energy and the mean capture cross-section are determined about 8.1 × 1010 cm−2, 2.7 × 1011 cm−2 eV−1 and 6.4 × 10−15 cm−2 using charge pumping method.  相似文献   

15.
Au/GaN/n-GaAs structure has been fabricated by the electrochemically anodic nitridation method for providing an evidence of achievement of stable electronic passivation of n-doped GaAs surface. The change of the electronic properties of the GaAs surface induced by the nitridation process has been studied by means of current-voltage (I-V) characterizations on Schottky barrier diodes (SBDs) shaped on gallium nitride/gallium arsenide structure. Au/GaN/n-GaAs Schottky diode that showed rectifying behavior with an ideality factor value of 2.06 and barrier height value of 0.73 eV obeys a metal-interfacial layer-semiconductor (MIS) configuration rather than an ideal Schottky diode due to the existence of GaN at the Au/GaAs interfacial layer. The formation of the GaN interfacial layer for the stable passivation of gallium arsenide surface is investigated through calculation of the interface state density Nss with and without taking into account the series resistance Rs. While the interface state density calculated without taking into account Rs has increased exponentially with bias from 2.2×1012 cm−2 eV−1 in (Ec−0.48) eV to 3.85×1012 cm−2 eV−1 in (Ec−0.32) eV of n-GaAs, the Nss obtained taking into account the series resistance has remained constant with a value of 2.2×1012 cm−2 eV−1 in the same interval. This has been attributed to the passivation of the n-doped GaAs surface with the formation of the GaN interfacial layer.  相似文献   

16.
The energy distribution profile of the interface states (Nss) of Al/TiO2/p-Si (MIS) structures prepared using the sol-gel method was obtained from the forward bias current-voltage (I-V) characteristics by taking into account both the bias dependence of the effective barrier height (?e) and series resistance (Rs) at room temperature. The main electrical parameters of the MIS structure such as ideality factor (n), zero-bias barrier height (?b0) and average series resistance values were found to be 1.69, 0.519 eV and 659 Ω, respectively. This high value of n was attributed to the presence of an interfacial insulator layer at the Al/p-Si interface and the density of interface states (Nss) localized at the Si/TiO2 interface. The values of Nss localized at the Si/TiO2 interface were found with and without the Rs at 0.25-Ev in the range between 8.4×1013 and 4.9×1013 eV−1 cm−2. In addition, the frequency dependence of capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the structures have been investigated by taking into account the effect of Nss and Rs at room temperature. It can be found out that the measured C and G/ω are strongly dependent on bias voltage and frequency.  相似文献   

17.
The layered n-InSe(:Sn) single crystal samples have been cleaved from a large crystal ingot grown from non-stoichiometric melt by the Bridgman-Stockbarger method. It has been made the absorption measurements of these samples without Schottky contact under electric fields of 0.0 and 6000 V cm−1. The band gap energy value of the InSe:Sn has been calculated as 1.36 ± 0.01 eV (at 10 K) and 1.28 ± 0.01 eV (at 300 K) under zero electrical field, and 1.31 ± 0.01 eV (at 10 K) and 1.26 ± 0.01 eV (at 300 K) under 6000 Vcm−1. The current-voltage (I-V) characteristics of Au-Ge/InSe(:Sn)/In Schottky diodes have been measured in the temperature range 80-320 K with a temperature step of 20 K. An experimental barrier height (BH) Φap value of about 0.70 ± 0.01 eV was obtained for the Au-Ge/InSe(:Sn)/In Schottky diode at the room temperature (300 K). An abnormal decrease in the experimental BH Φb and an increase in the ideality factor n with a decrease in temperature have been explained by the barrier inhomogeneities at the metal-semiconductor interface. From the temperature-dependent I-V characteristics of the Au-Ge/InSe(:Sn)/In contact, that is, and A* as 0.94 ± 0.02 and 0.58 ± 0.02 eV, and 27 ± 2 and 21 ± 1 (A/cm2 K2), respectively, have been calculated from a modified versus 1/T plot for the two temperature regions. The Richardson constant values are about two times larger than the known value of 14.4 (A/cm2 K2) known for n-type InSe. Moreover, in the temperature range 80-320 K, we have also discussed whether or not the current through the junction has been connected with TFE.  相似文献   

18.
We utilize hydrogen peroxide (H2O2) treatment on (0 0 0 1) ZnO substrates to investigate the characteristics of Pt and Pt oxide Schottky contacts (SCs). X-ray rocking curves show the mosaicity structure becomes larger after H2O2 treatment. Photoluminescence (PL) spectra show the yellow-orange emission peaking at ∼576-580 nm with respect to deep level of oxygen interstitials introduced by H2O2 treatment. The threshold formation of ZnO2 resistive layer on H2O2-treated ZnO for 45 min is observed from grazing-incidence X-ray diffraction. The better electrical characteristic is performed by Pt oxide SC with the larger barrier height (1.09 eV) and the lower leakage current (9.52 × 10−11 A/cm2 at −2 V) than Pt SC on the H2O2-treated ZnO for 60 min. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometer (SIMS) examinations indicate the promoted interface oxide bonding and Zn outdiffusion for Pt oxide contact, different from Pt contact. Based on current-voltage, capacitance-voltage, X-ray diffraction, PL spectra, XPS, and SIMS results, the possible mechanism for effective rectifying characteristic and enhanced Schottky behavior is given.  相似文献   

19.
We have studied Au/n-GaN Schottky barrier diodes. GaN surfaces have been prepared by cleaning in HCl and (NH4)2S prior to metal deposition. The zero-biased barrier heights and ideality factors obtained from the current-voltage characteristics differ from diode to diode, although all the samples were prepared identically. The statistical analysis for the reverse bias C-V data yielded mean value of (1.35±0.04) eV for Schottky barrier height of HCl treated sample and (1.20±0.03) eV for (NH4)2S sample, where 9 dots were considered from each cleaning method. It was found that the barrier height values obtained from the C−2-V (1.43 eV) and I-V characteristics (0.89 eV) are different from each other by 0.54 eV. The inhomogeneous barrier heights were found to be related to the effect of the high series resistance on diode parameters (Akkiliç et al., 2004) [1].  相似文献   

20.
The thermal stability and measurement temperature dependence of Schottky contact characteristics on n-GaN using a W2B5/Ti/Au metallization scheme was studied using current-voltage (I-V), scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) measurements. The elemental profile obtained from samples annealed at 350 °C showed some titanium diffusion into the gold layer but little other difference from the as-deposited wafer. Annealing at 700 °C produced significant diffusion of titanium. The Schottky barrier height increased with anneal temperature up to 200 °C, reaching a maximum value of 0.65 eV, but decreased at higher annealing temperatures. The reverse breakdown voltage from diodes fabricated using the W2B5-based contacts showed a similar dependence. The reverse current magnitude was larger than predicted by thermionic emission alone. The barrier height showed only minor changes with measurement temperature up to 150 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号