首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Enhanced ferrite nanoparticles are a new class of contrast agents for magnetic resonance imaging (MRI). The enhanced ferrites are synthesized by reverse micelles technique to form iron core and oxide or ferrite shell preventing further oxidation of the nanoparticles. The nanoparticles are further functionalized using dopamine and PEG-600 to increase the solubility of the high magnetic moment nanoparticles. 1H relaxation measurements of aqueous solutions of the nanoparticles were conducted at 2.4 T. The relaxivities r1 and r2, representing the slopes of these curves, are 7.19 and 9.96 s−1 mM−1, respectively. These values should be compared with relaxivities of 4–5 s−1 mM−1 corresponding to commonly used commercial contrast agents in human MR examinations.  相似文献   

2.
Monodispersed amphiphilic FePt nanoparticles with the diameter of about 4 nm were synthesized by high temperature pyrolysis of iron(III) acetylacetonate and platinum(II) acetylacetonate. Their amphiphilicity is contributed to the tetraethylene glycol (TEG) and oleic acid (OA) on the surface, which is confirmed by FTIR and XPS spectra. They provide a superparamagnetic property with the saturation magnetization (Ms) of about 25 emu/g and the transverse relaxivity (r2) of about 122.6 mM−1 s−1 in aqueous solutions. Furthermore, FePt nanoparticles show low cytotoxicity in living cells. They can be uptaken by HeLa cells effectively and result in the obvious decrease of T2 relaxation time after internalization.  相似文献   

3.
The time dependence of remanence coercivity and thermal stability were investigated for hard/soft-stacked media consisting of a magnetically hard granular layer underneath a very thin soft layer with a large saturation magnetization, Ms. The values of remanence coercivity at measurement times t′=103 and 10−5 s (pulse field) were measured, and defined as Hr and HrP. The remanence coercivity on the recording time scale, Hr (1 ns), and the energy barrier, ΔE/kT, were evaluated by fitting Hr and HrP to Sharrock's equation taking into account the power law variation of the energy barrier, n. The value of Hr (1 ns) for a (Co–Pt)–SiO2 (9 nm)/Co–SiO2 (2 nm) stacked medium with an interfacial coupling control layer was about 9 kOe, which was less than half of that of a (Co–Pt)–SiO2 (9 nm) conventional medium (=21.3 kOe). The value of ΔE/kT for the stacked medium was about 111 (n=0.7), and was not significantly different from the conventional medium. Moreover, no significant difference in the rate of decrease of Hr with increasing temperature was observed between media with and without interlayers. These results indicate that the use of a thin soft layer with high Ms was effective at significantly reducing Hr with no notable change in thermal stability.  相似文献   

4.
Silver nanoparticles have been prepared using hydrogen gas as the reducing agent for silver nitrate and poly(vinyl pyrrolidone) as the capping agent; the reaction was carried out at 70 °C for 3 h. The size of the nanoparticles was found to be about 20 nm as analyzed using transmission electron micrographs. The X-ray diffraction pattern revealed the face-centered cubic (fcc) structure of silver nanoparticles. The linear absorption of Ag nanoparticles, α, is obtained about 3.71 cm−1. The non-linear refractive indices of silver nanoparticles were defined by the z-scan technique using CW He-Ne laser (λ = 632.8 nm) at different incident intensities. The magnitude of non-linear refractive index (n2) was measured to be in the order of 10−7 (cm2/W) with a negative sign. Therefore self-defocusing phenomena is taking placed for Ag nanoparticles.  相似文献   

5.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

6.
Water soluble FeOOH nanospindles with small size were synthesized by a simple hydrolysis method of inorganic salts and water bath treatment with different incubation time. The morphology, microstructure, magnetic resonance imaging (MRI) performance and cytotoxicity of the as-prepared FeOOH nanospindles were investigated, respectively. The results showed that the longitudinal length of FeOOH nanospindles was about 40-50 nm, and the incubation time had important effect for the morphology and production rate of FeOOH nanospindles. MRI test showed that the longitudinal and transverse relaxivities (r1 and r2 values) of FeOOH nanospindles were about 3.06 mM−1 s−1 and 5.06 mM−1 s−1, respectively. Furthermore, the experimental results of the Prussian Blue staining showed the clusters of FeOOH nanospindles in the cytoplasm of the labeled cells, and the cytotoxicity characterization indicated that FeOOH nanospindles have low cytotoxicity. Therefore, the as-prepared FeOOH nanospindles will have potential applications as T1- and T2-weighted MRI contrast agents.  相似文献   

7.
In this work we synthesized ZnS:Mn2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn2+ exhibited an orange-red emission at 594 nm due to the 4T1-6A1 transition in Mn2+. The PL intensity increased with increase in the Mn2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10−8 cm2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10−3 cm/W with positive sign.  相似文献   

8.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

9.
The base alloys of nominal composition (Nd0.75Pr0.25)yFebalanceBx (y=10−9.2 and x=6−19.2) were chosen to study the influence of RE/B ratio, smaller than stochiometric composition on magnetic properties of over quenched and annealed ribbons. From X-ray diffraction analysis of these ribbons, the α-Fe and Fe3B phases were observed along with (Nd,Pr)2Fe14B major phase. The average grain size was calculated using these patterns as: 35 nm for α-Fe, 45 nm for (Nd,Pr)2Fe14B and 22 nm for Fe3B particles. TEM analysis also supported the nano distribution of the above phases. These X-ray graphs support the idea of exchange coupling between hard and soft phases responsible for the observed magnetic properties. In these ribbons the saturation magnetization Js and remnant magnetization Jr increases from 1.19 T to 1.66 T and from 0.65 T to 0.91 T, respectively as RE/B ratio increases. The increase in Js and Jr may be attributed to the presence of exchange coupling between these phases. The corresponding coercivity jHc decreases from 673.33 to 271.33 k Am−1. The maximum energy product (BH)max initially increases from 72.42 kJ m−3to 109.85 kJ m−3 up to RE/B≈1 and then decreases to 58.5 kJ m−3, depending on the shape of second quadrant BH loop. The coercivity mechanism observed from initial hysteresis curve was considered to be nucleation of domain wall.  相似文献   

10.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

11.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

12.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

13.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

14.
A series of PdxNi1 − x nanoparticles in a diameter of 6-7 nm were prepared by wet chemical reduction. They were then modified with two surfactants, stearic acid (SA) and polyethylene glycol (PEG). Desorption of the surfactant was studied using a temperature programmed desorption technique, and the sintering behavior of surface-modified PdxNi1 − x nanoparticles was examined. Since surface energy of the nanoparticles depends on the alloy composition, it can be correlated with the desorption temperature of surfactant from the nanoparticle surface. Because Ni has a higher surface energy, the surfactant desorption temperature increases as the Ni content increases. With the same stoichiometry, the desorption temperature of SA is always higher than that of PEG. The SA-modified nanoparticles have higher thermal stability and are less sintered than PEG-modified nanoparticles. The sintering and growth behavior of the nanoparticles can be correlated with variation of surface energy due to different surface modification.  相似文献   

15.
The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H2O2). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag+, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 × 10−5 to 6.5 × 10−3 M and a detection limit 2.7 × 10−5 M of H2O2 (S/N = 3) using amperometric method.  相似文献   

16.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO2 (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (Ka) were 2.18±0.04×104, 0.87±0.05×104, 0.68±0.06×104 M−1 at 298, 304 and 310 K, respectively. In addition, according to the Van’t Hoff equation, the thermodynamic functions standard enthalpy (ΔH0) and standard entropy (ΔS0) for the reaction were calculated to be −75.18±0.15 kJ mol−1 and −170.11±0.38 J mol−1 K−1. These results indicated that TiO2 NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO2 NPs-HSA complex were discussed.  相似文献   

17.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

18.
Size-controlled Mn0.67Zn0.33Fe2O4 nanoparticles in the wide range from 80 to 20 nm have been synthesized, for the first time, using the oxidation method. It has been demonstrated that the particle size can be tailor-made by varying the concentration of the oxidant. The magnetization of the 80 nm particles was 49 A m2 kg−1 compared to 34 A m2 kg−1 for the 20 nm particles. The Curie temperatures for all the samples are found to be within 630±5 K suggesting that there is no size-dependent cation distribution. The critical particle size for the superparamagnetic limit is found to be about 25 nm. The effective magnetic anisotropy constant is experimentally determined to be 7.78 kJ m−3 for the 25 nm particles, which is about an order of magnitude higher than that of the bulk ferrite.  相似文献   

19.
The high-temperature photochemistry (HTP) technique, previously used for reactions of neutral species, has been adapted to the study of atomic metal ion-molecule reactions. Ca+ ions were generated by 193 nm multi-photon photolysis of calcium acetyl acetonate and its pyrolysis fragments. The relative ion concentrations were monitored by laser-induced fluorescence at 393.4 nm. Ar was used as the bath gas. The data for the Ca+ + O2 + M → CaO2+ + M association reaction (1) are fitted by k1(907-1425 K) = 3.5 × 10−32 exp(+3161 K/T) cm6 molecule−2 s−1. Combining with an approximate k1(296 K) value in the literature leads to k1(296-1425 K) = 5.8 × 10−22 (T/K)−2.9 exp(−601 K/T) cm6 molecule−2 s−1. Over much of the observed temperature range reaction (1) has much smaller rate coefficients than the corresponding neutral Ca association reaction. Reaction (1) is shown to behave very similarly to the O2 association reaction with neutral K atoms, with which Ca+ is iso-electronic. This suggests that the initial step is ion-pair complex formation of the superoxide Ca2+(O2), which is also consistent with results from density functional calculations. The k1 values are rationalized via Troe’s unimolecular formalism, which leads to good accord with the experiments.  相似文献   

20.
Poly(dimethylsiloxane) (PDMS) has been irradiated with a frequency quadrupled Nd:YAG laser and a KrF*-excimer laser at a repetition rate of 1 Hz. The analysis of ablation depth versus pulse number data reveals a pronounced incubation behavior. The thresholds of ablation (266 nm: 210 mJ cm−2, 248 nm: 940 mJ cm−2) and the corresponding effective absorption coefficients αeff (266 nm: 48900 cm−1, 248 nm: 32700 cm−1, αlin = 2 cm−1) were determined. The significant differences in the ablation thresholds for both irradiation wavelengths are probably due to the different pulse lengths of both lasers. Since the shorter pulse length yields a lower ablation threshold, the observed incubation can be due to a thermally induced and/or a multi-photon absorption processes of the material or impurities in the polymer.Incubation of polymers is normally related to changes of the chemical structure of the polymer. In the case of PDMS, incubation is associated with local chemical transformations up to several hundred micrometers below the polymer surface. It is possible to study these local chemical transformations by confocal Raman microscopy, because PDMS is transparent in the visible. The domains of transformation consist of carbon and silicon, as indicated by the appearance of the carbon D- and G-bands between 1310 and 1610 cm−1, a band appearing between 502 and 520 cm−1 can be assigned to mono- and/or polycrystalline silicon.The ablation products, which are detected in the surroundings of the ablation crater consist of carbon and amorphous SiOx (x ≈ 1.5) as detected by infrared spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号