首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
NaFeGe2O6 polycrystals were synthesized and their x-ray diffraction, magnetic, electrical, and Mössbauer characteristics were measured. It is established that this monoclinic compound is a dielectric with a temperature of antiferromagnetic ordering of 15 K. The Mössbauer spectrum at 300 K is a quadrupole doublet. The isomer shift is 0.40 mm/s, which is characteristic of the high-spin Fe3+ ion in the octahedral coordination. The quadrupole splitting is 0.34 mm/s, which indicates that the oxygen octahedron around the iron cation is distorted. The exchange interactions are estimated, and the crystal magnetic structure is discussed.  相似文献   

2.
The effect of high pressures up to 70 GPa on single-and polycrystalline samples of yttrium iron garnet Y357Fe5O12 is studied by Mössbauer absorption spectroscopy (for the 57Fe nucleus) in a diamond-anvil cell. It is found that the hyperfine magnetic field Hhf at 57Fe nuclei vanishes abruptly at a pressure of 48 ± 2 GPa, which indicates the transition of the crystal from the ferrimagnetic state to nonmagnetic one. The magnetic transition is irreversible. When the pressure decreases, the magnetic state is not recovered and the garnet remains nonmagnetic until zero pressure. The behavior of the quadrupole splitting and isomer shift shows that, simultaneously with the magnetic transition, irreversible electron and possibly spin transitions occur with changes in the local crystalline structure. The mechanisms of the magnetic collapse are discussed.  相似文献   

3.
Electronic excitation of materials is of fundamental and technological importance and interest in terms of photoinduced phase transition, photovoltaics, and photocatalysis. In the present study, photoexcitation of Fe2 O 3 epitaxially grown on rutile TiO2(100) was investigated with conversion electron Mössbauer spectroscopy (CEMS) under dominantly visible-light irradiation. 57Fe was deposited on the substrate at a substrate temperature of 973 K, and the resulting film was characterized by RHEED and XPS. After deposition of Fe on TiO2(100), it was found that Fe was oxidized to Fe 3+, and the structure was analyzed to be the rhombohedral phase of Fe2 O 3. While the CEMS spectrum without light irradiation showed a quadrupole splitting of 0.80 mm/s with an isomer shift of +0.25 mm/s, an additional component with a quadrupole splitting of 0.85 and an isomer shift of +0.67 mm/s was observed under light irradiation. The latter component corresponds to a reduced state of Fe at the octahedral site surrounded by oxygen atoms. The lifetime of this photoexcited state is discussed.  相似文献   

4.
The local structure of DyNiO3 nickelate at both sides of the insulator (T < T im) ? metal (T > T im) phase transition was studied by probe 57Fe Mössbauer spectroscopy. The character of change in the hyperfine parameters of probe iron atoms specifically near the phase-transition temperature (TT im) was analyzed.  相似文献   

5.
The first measurements of the resonant Mössbauer self-absorption of the long-lived 109m Ag isomer gamma rays as a function of the declination angle of the gamma beams from the horizontal direction are presented for a gamma source that represents a single-crystal silver plate doped with a parent 109Cd nuclide. The resonant absorption is manifested as a minimum of the counting rate ratio of the 109m Ag and 241Am (control gamma source) gamma-line intensities at a zero-declination angle for one of two detectors and an angle of about 1° for another detector. The magnitude of the effect is in agreement with the results of our previous experiments performed on another setup. It follows, from the data obtained, that the angular width of the gamma-resonance profile is less than two degrees, which corresponds to a broadening factor of the Mössbauer gamma line of less than five. The value of this factor calculated from the measured relative magnitude of the 109m Ag gamma-ray resonant absorption is 6.3 ?1.9 +5.2 .  相似文献   

6.
The magnetic properties of a synthesized dielectric NaFeGe2O6. polycrystal have been studied. The antiferromagnetic ordering of this compound below 15 K has been established. The Mössbauer spectrum at 300 K is a quadrupole doublet; it is characterized by an isomeric shift typical of the high-spin Fe3+ ion in the octahedral coordination and quadrupole splitting, which indicates distortion of the oxygen octahedron around the iron cation. Quasi-one-dimensionality of the sample magnetic structure is proved.  相似文献   

7.
The spectra of electron paramagnetic resonance and inelastic neutron scattering in crystals of the heavy-fermion intermetallic compound YbRh2Si2 are interpreted. The phenomenological potentials of the crystal electric field of Yb3+ tetragonal centers and the parameter of the Hamiltonian for the spin-orbit interaction of electrons are determined from the experimental energy level schemes. A comparison of the results obtained from experimental data on electron paramagnetic resonance, inelastic neutron scattering, and Mössbauer spectroscopy shows that the most probable ground state of Yb3+ ions in the YbRh2Si2 crystal is the Kramers doublet Γ t6 ? .  相似文献   

8.
The problem of observing the Mössbauer resonance absorption of gamma rays from long-lived isomers is briefly outlined, first and foremost for 109m Ag taken as an example. Experiments indicative of a small broadening of the Mössbauer gamma line of this isomer in metallic silver are described. This circumstance made it possible to develop and manufacture a gravitational gamma spectrometer and to perform the first experiments with it, which confirm once again the previous data on a small width of the gamma line in question. The broadening factor obtained from these data proved to be 6.3 ?1.9 +5.2 .  相似文献   

9.
The dilute magnetic properties of SrSn1?xFexO3 (x = 0.01 ? 0.15) prepared by sol-gel and thermal decomposition methods were investigated by 57Fe Mössbauer spectrometry, magnetometry, and X-ray diffractometry. It was found that SrSnO3 doped with 2–8 % Fe show weak ferromagnetism although only paramagnetic doublets are observed in 57Fe Mössbauer spectra at room temperature (RT), whereas SrSnO3 doped with 10–15 % Fe show relatively strong ferromagnetism, and the sextets are additionally observed in the 57Fe Mössbauer spectra at RT. The weak ferromagnetism by doping 2–8 % Fe is considered to be caused by the induced magnetic defects, and the ferromagnetism by doping 10–15 % Fe are considered mainly due to the magnetic coupling between dilute Fe 3+ partially substituted at Sn 4+ sites in the orthorhombic structure of SrSnO3?δ accompanying the oxygen deficiencies. It is further remarkable that poor crystalline 8 % Fe doped SrSnO3?δ obtained by annealing at 600 °C shows relatively high saturation magnetization and low coercivity.  相似文献   

10.
SnO2 powders, doped with various 57Fe contents were prepared by a sol-gel method, and annealed finally at 500 °C and 650 °C. These samples were characterized by Mössbauer spectroscopy, vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to investigate the relationship of magnetic properties, grain sizes, annealing temperatures and Mössbauer parameters. The particle sizes of SnO2 powders reduced to less than 100 nm with the increase of Fe contents up to 5%. Rutile SnO2 was the only phase obtained for all samples. Room temperature Mössbauer spectra suggest the presence of two different paramagnetic iron sites for all samples and one magnetically relaxed species for those samples with the lowest iron concentrations. The magnetization increased with the Fe content, but was reduced for the samples annealed at 650 °C perhaps due to a segregation of α-Fe2O3 doped with tin.  相似文献   

11.
The composition and magnetic properties of the powders extracted from CoFe2O4 aqueous suspensions and the CoFe2O4/PVA (PVA is polyvinyl alcohol) nanocomposites with a cobalt ferrite content of 10–30 wt % have been investigated using Mössbauer spectroscopy, transmission electron microscopy, and vibration magnetometry. The cationic formulas of the cobalt ferrites synthesized have been determined. The differences between samples synthesized at temperatures of 72.5 and 82.5°C have been revealed. The specific features of the observed changes in the agglomeration of CoFe2O4 particles after introducing into the PVA matrix have been studied. It has been shown that the iron ion distribution determined by Mössbauer spectroscopy in octahedral and tetrahedral lattice sites correlates with vibration magnetometry data.  相似文献   

12.
The magnetic properties and Mössbauer results for SnO2 doped with 57Fe are reviewed, and the values of isomer shift and quadrupole splitting are compared with the results obtained by ab initio calculations. It is concluded that the exchange interactions between oxygen defects and magnetic atoms are responsible for long range magnetic interactions of dilute Fe ions dispersed in SnO2. Fe atom precipitated clusters may be formed in highly Fe doped SnO2 samples by annealing at relatively high temperatures for several hours. The reduction of the particle size to nano-scale dimensions induces magnetization, which can be associated with oxygen defects. We have measured the nuclear inelastic scattering (NIS) spectra of Fe oxides, and 57Fe and (Co or Mn) doped SnO2 synthesized mainly by sol–gel methods and we have derived the vibration density of states (VDOS). The local phonons are sensitive to the presence of precipitated clusters.  相似文献   

13.
High-quality single crystals of ludwigites Cu2 MBO5 (M = Fe3+, Ga3+) have been grown, and the magnetic, resonance, and Mössbauer studies have been performed. It is established that the Cu2FeBO5 and Cu2GaBO5 compounds are antiferromagnets with Néel temperatures of 32 and 3.4 K, respectively. A model of the magnetic structure of the compounds is proposed. It is shown that the magnetic properties of the ludwigites are substantially dependent on the degree of ion distribution over crystallographic positions.  相似文献   

14.
Tungsten (W)-doped SnO2 is investigated by first-principle calculations, with a view to understand the effect of doping on the lattice structure, thermal stability, conductivity, and optical transparency. Due to the slight difference in ionic radius as well as high thermal and chemical compatibility between the native element and the heterogeneous dopant, the doped system changes a little with different deviations in the lattice constant from Vegard’s law, and good thermal stability is observed as the doping level reaches x = 0.125 in Sn1-x W x O2 compounds. Nevertheless, the large disparities in electron configuration and electronegativity between W and Sn atoms will dramatically modify the electronic structure and charge distribution of W-doped SnO2, leading to a remarkable enhancement of conductivity, electron excitation in the low energy region, and the consequent optical properties, while the visible transparency of Sn1-x W x O2 is still preserved. Particularly, it is found that the optimal photoelectric properties of W-doped SnO2 may be achieved at x = 0.03. These observations are consistent with the experimental results available on the structural, thermal, electronic, and optical properties of Sn1-x W x O2, thus presenting a practical way of tailoring the physical behaviors of SnO2 through the doping technique.  相似文献   

15.
The influence of variable valence on NSR spectra of 53Cr nuclei in ferromagnetic CuCr2?xSbxS4 (x = 0, 0.02, 0.07) at T = 77 K is considered. For quadrupole nuclei in locally anisotropic positions, the effects of variable valence result in averaging of not only the resonance frequency but also of the quadrupole and magnetic anisotropy constants. The significant difference between the experimental and calculated values of these constants indicates the important role of the intrinsic electronic contribution to the anisotropy of hyperfine fields of compounds containing Cr4+ ions. Additional lines caused by intrinsic and induced defects in the structure are observed in the spectra of doped and undoped compounds.  相似文献   

16.
We studied the Mössbauer effect in 151Eu and 57Fe doped crystals in the search for laser-induced effects caused by changes in the hyperfine interaction due to electronic excitation. The Mössbauer spectra observed in the presence of laser radiation demonstrated a notable change of the shape of the 151Eu spectrum and the appearance of an additional hyperfine pattern in the case of the 57Fe Mössbauer resonance.  相似文献   

17.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

18.
19.
The variation of electronic density in the superconducting phase transition in the classical superconductor Nb3Al with critical temperature Tc=18.6 K was studied using 73Ge emission Mössbauer spectroscopy. A comparison of the results obtained and the data available for the 67Zn isotope in the lattices of high-temperature superconductors revealed a correlation between the electronic density variation at the Mössbauer probe nuclei sites and the value of Tc. This correlation is assumed to be related to the dependence of the electronic density variation on the standard correlation length.  相似文献   

20.
A comparative analysis of the results of the X-ray and Mösbauer studies of the high-temperature superconductor (HTSC) YBa2Cu3O y and YBa2Cu3 ? x 57Fe x O y (x = 0.015, T c ≈ 91.5 K) samples with different average grain sizes <D> in the micron and submicron ranges has been performed. The regularities in the change in the lattice parameter c and in the degree of occupation of different oxygen sites in the CuOδ chain planes taking place at the decrease in <D> have been studied. The quantitative interrelation between the parameter c and the oxygen content δ in the CuOδ planes exceeding the amount of the mobile oxygen due to the interplane oxygen redistribution is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号