首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EPR signal from localized ytterbium ions was observed in an undoped YbRh2Si2 compound with heavy fermions in the temperature range from 1.5 to 25 K. The exponential contribution dominating the temperature dependence of EPR line width at temperatures above 15 K was shown to be caused by the random transitions from the ground to the first excited Stark sublevel of the Yb3+(4f13) ion with the activation energy Δ=115 K.  相似文献   

2.
Cubic paramagnetic centers formed by Yb3+ impurity ions in fluorite-type crystals MeF2 (Me = Cd, Ca, Pb) have been investigated using electron paramagnetic resonance, magnetic circular dichroism, magnetic circular polarization of luminescence, Zeeman splitting of optical absorption and luminescence lines, and optical detection of electron paramagnetic resonance. The g factors of the 2Γ7 state in the excited multiplet 2 F 5/2 of Yb3+ ions in Me F2 crystals, the hyperfine interaction constant 171 A (171Yb) for the excited multiplet 2 F 5/2 in the CaF2 crystal, and the energies and symmetry properties of all energy levels of Yb3+ ions in MeF2 crystals are determined. The crystal-field parameters for the crystals under investigation are calculated.  相似文献   

3.
In order to directly observe neutron scattering by heavy fermion quasiparticles at low temperatures, a CeRu2Si2 single crystal has been studied by the small-angle neutron scattering method. In the experiment, neutron scattering is observed at T = 0.85 K for momentum transfers q ≤ 0.04 Å?1, which is treated as the orbital component of magnetic scattering by heavy fermion quasiparticles. It has been found that the application of a magnetic field H = 1 T leads to both an increase in the observed scattering and its anisotropy with respect to the field direction. Moreover, measurements in the magnetic field reveal additional scattering for q > 0.04 Å?1, which is well described by a Lorentzian and is interpreted as neutron magnetic scattering by spin-density fluctuations with a correlation radius Rc ≈ 30 Å.  相似文献   

4.
The dynamic magnetic response of the intermediate-valence compound EuCu2Si2 has been studied using inelastic neutron scattering. At low temperatures, strong renormalization of the 7 F 07 F 1 spin-orbit transition energy is detected; it is likely to be related to partial delocalization of the f electrons of Eu. An increase in the temperature increases the valence instability of europium and results in further changes in the magnetic excitation spectrum parameters and the appearance of an intense quasi-elastic component.  相似文献   

5.
Single crystals of yttrium aluminum borate YAl3(BO3)4 doped with manganese ions are studied using electron paramagnetic resonance spectroscopy. It is shown that manganese ions introduced at low concentrations into the sample predominantly occupy yttrium ion sites in the crystal structure. The shape of the electron paramagnetic resonance spectrum unambiguously indicates that the valence of manganese ions in this case is equal to 2+. The parameters of the spin Hamiltonian of Mn2+ ions in the YAl3(BO3)4 matrix are determined at room temperature. The magnitude and sign of the fine structure parameter D allow the conclusion that the YAl3(BO3)4 single crystals doped with manganese ions have a strong crystal field at the yttrium ion sites and easy-axis anisotropy.  相似文献   

6.
The momentum-transfer dependence of the magnetic form factor associated with the quasielastic spectral component in the dynamic magnetic response of intermediate valence SmB6 has been measured using inelastic neutron scattering on a double-isotope (154Sm, 11B) single crystal. The experimental dependence differs qualitatively from those obtained earlier for the inelastic signals, as well as from the field-induced magnetic form factor of SmB6 obtained by polarized neutron diffraction. This observation is interpreted by specifically considering the Curie-type contributions to the dynamic susceptibility, which arise from the mixing of 4 f5 and 4 f6J-multiplets into the intermediate valence state wavefunction.  相似文献   

7.
CaF2 crystals doped with Yb3+ ions have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy. EPR spectra of paramagnetic centers (PCs) for cubic (Tc) and tetragonal (Ttet) symmetries were identified. Empirical energy level diagrams were established and crystal field parameters were determined. Information on the CaF2∶Yb3+ phonon spectra was obtained from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyze the crystal lattice distortions in the vicinity of the Yb3+ ion. Within the framework of a superposition model, it is established that four F ions located symmetrically with respect to the fourfold axis from the side of the ion-compensator approach the impurity ion and deviate from the PC axis. The second set of four fluorine ions also approaches the Yb3+ ion and the PC axis. The ion-compensator F also approaches considerably the impurity ion.  相似文献   

8.
The electron paramagnetic resonance (EPR) of Yb3+ ions in a KY(WO4)2 single crystal was investigated at T=4.2 K and fixed frequency of 9.38 GHz. The resonance absorption observed on the lowest Kramers doublet represents the complex superposition of three spectra, corresponding to the ytterbium isotopes with different nuclear moments. The EPR spectrum is characterized by a strong anisotropy of the g-factors. The temperature dependence of the g-factors is shown to be caused by the strong spin-orbital and orbital-lattice coupling. The resonance lines broaden with increasing temperature due to the short spin-lattice relaxation times.  相似文献   

9.
The local structure of Tm2+ and Yb3+ cubic impurity centers in MeF2: Tm2+ and MeF2: Yb3+ (Me = Ca, Sr, Ba) fluoride crystals, as well as Yb3+ trigonal and tetragonal impurity centers in MeF2: Yb 3+ crystals, is calculated within the shell model in the pair potential approximation.  相似文献   

10.
Electron paramagnetic resonance (EPR) studies have been performed with the aim of determining the valence state and local crystal structure of the nearest environment of vanadium ions in the initial, charged, and discharged samples of the cathode material NaxV2(PO4)3 (1 ≤ x ≤ 3). It has been found that the charged sample (x = 1) is characterized by an intense signal corresponding to V4+ ions located in a highly distorted octahedral crystal field. An EPR signal with the g-factor close to the g-factor of the V4+ ion has also been observed in the initial sample (x = 3), where the intensity of the resonance signal is one order of magnitude lower than that in the charged sample. It has been revealed that the resonance signal under consideration is associated with the formation of antisite defects when a part of vanadium ions are located in sites of sodium ions. It has also been found that the intensity of this signal increases after a complete charge–discharge cycle (x = 3).  相似文献   

11.
Synthetic single crystals of chromium-and lithium-doped forsterite, namely, (Cr,Li): Mg2SiO4, are studied using electron paramagnetic resonance spectroscopy. It is revealed that, apart from the known centers Cr3+(M1) and Cr3+(M2) (with local symmetries Ci and Cs, respectively), these crystals involve two new types of centers with C1 symmetry, namely, Cr3+(M1)′ and Cr3+(M2)′ centers. The standard parameters D and E in a zero magnetic field [zero-field splitting (ZFS) parameters expressed in GHz] and principal components of the g tensor are determined as follows: D=31.35, E=8.28, and g=(1.9797, 1.9801, 1.9759) for Cr3+(M1)′ centers and D=15.171, E=2.283, and g=(1.9747, 1.9769, 1.9710) for Cr3+(M2)′ centers. It is found that the lowsymmetric effect of misalignment of the principal axes of the ZFS and g tensors most clearly manifests itself (i.e., its magnitude reaches 19°) in the case of Cr3+(M2)′ centers. The structural models Cr3+(M1)-Li+(M2) and Cr3+(M2)-Li+(M1) are proposed for the Cr3+(M1)′ and Cr3+(M2)′ centers, respectively. The concentrations of both centers are determined. It is demonstrated that, upon the formation of Cr3+-Li+ ion pairs, the M1 position for chromium appears to be two times more preferable than the M2 position. Reasoning from the results obtained, the R1 line (the 2E4A2 transition) observed in the luminescence spectra of (Cr,Li): Mg2SiO4 crystals in the vicinity of 699.6 nm is assigned to the Cr3+(M1)′ center.  相似文献   

12.
Magnetic excitations in the antiferromagnetic Bi2CuO4 (T N =42K) are investigated on the basis of anisotropic exchange interaction between spins of Cu2+ ions. We calculate the dispersion curves and evaluate the intensity of the inelastic neutron scattering by spin wave excitations. Spin contraction at OK and the effect of spin wave interaction are studied.  相似文献   

13.
The mechanism of the upconversion processes in Y6O5F8: 2%Er3+/X%Yb3+ (X = 3, 10, 20) microtubes has been explored. The luminescent properties of the as prepared sample is investigated by utilizing up- /downconversion, decay and time resolve spectra. The results indicate that the red and green emission are clearly competitive depending on the Yb3+ concentration. High Yb3+ concentration induces the enhancement of the energy-back-transfer (EBT), process, which leads to the quenching of green emission and enhances the red emission. So it is possible to utilize the temporal evolutions of emission bands to deeply understand the color change UC mechanisms.  相似文献   

14.
A trigonal Yb3+ paramagnetic center in the CsCaF3 single crystal was studied by magnetic resonance and optical spectroscopy methods. The structural model of the complex and the empirical energy level scheme were established. The transferred hyperfine interaction parameters and the crystal field ones were determined. The crystal field parameters were used to analyze the lattice distortions in the vicinity of Yb3+ using the superposition model.  相似文献   

15.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

16.
Electron paramagnetic resonance (EPR) and magnetostriction of the Cu2MnBO5 single crystal have been studied. The EPR spectrum consists of a single Lorentzian line due to the exchange-coupled system of spins of Cu2+ and Mn3+ ions. It has been established experimentally that the g-factor in the paramagnetic region is strongly anisotropic and anomalously small, which is not typical of the exchange-coupled system of spins of Cu2+ and Mn3+ ions. At a temperature of 150 K, the g-factors along the crystallographic a, b, and c axes are 2.04, 1.96, and 1.87, respectively. Such small effective g-factor values can be due to the effect of the anisotropic Dzyaloshinskii–Moriya exchange interaction between the spins of Cu2+ and Mn3+ ions directed along the a axis. The presence of two Cu2+ and Mn3+ Jahn–Teller ions occupying four nonequivalent positions in the crystal is responsible for the absence of the inversion center. It is found that the behavior of the magnetostriction of Cu2MnBO5 is not typical of transition-metal crystals but is closer to the behavior of crystals containing rare-earth ions.  相似文献   

17.
High-frequency broad-band (65–240 GHz) EPR is used to study impurity centers of bivalent chromium in a CdGa2S4 crystal. It is found that the EPR spectra correspond to tetragonal symmetry. The spin Hamiltonian H = βB · g · S + B 2 0 O 2 0 + B 4 0 O 4 0 + B 4 4 O 4 4 with the parameters B 2 0 =23659±2 MHz, B 4 0 =1.9±1 MHz, |B 4 4 |=54.2±2 MHz, g=1.93±0.02, and g=1.99±0.02 is used to describe the observed spectra. It is concluded that chromium ions occupy one of the tetrahedrally coordinated cation positions.  相似文献   

18.
Upconversion blue emissions of Tm3+-ion-heavy-doped NaY(WO4)2 crystals are investigated with three different near-infrared pump mechanisms. The dependence of upconversion efficiency on the pump mechanism is analyzed from the scope of the concentration quenching effect. Three cross-relaxation processes, , , and , which influence the upconversion dominantly in the Tm3+-heavy-doped system, are demonstrated theoretically and experimentally. The results indicate that Yb3+ ions can weaken the concentration quenching effect of Tm3+ ions significantly so that the blue emission efficiency can be enhanced by one order of magnitude. At the same time, the wavelength of the pump source also has considerable influence on both the population of some crucial energy levels and the upconversion mechanism. Experiments show that the upconversion blue emission in Tm3+/Yb3+ co-doped NaY(WO4)2 crystal under 980-nm laser diode excitation is the most intensive of these three different near-infrared pump mechanisms. The conclusions are confirmed by spectra measurements and calculations of Judd–Ofelt theory and Miyakawa–Dexter theory. PACS 42.70.Hj; 78.55.-m  相似文献   

19.
The Sm3+ ion in the Cs2NaYF6 single crystal was studied by optically detected electron paramagnetic resonance spectroscopy. Magnetic resonance signals were recorded by Faraday rotation at the frequency of 0.6–0.85 GHz and magnetic fields of about 0.14 T. The hyperfine parameters of 147Sm3+ and 149Sm3+ isotopes were determined.  相似文献   

20.
High-frequency electron paramagnetic resonance (EPR) spectra of the KPb2Cl5:Tb3+ crystal have been investigated. Three types of spectra were observed in the frequency range of 74–200 GHz. The most intensive spectrum with the resolved hyperfine structure corresponded to transitions between sublevels of the159Tb3+ ground quasi-doublet with the zero-field splitting (ZFS) close to 48 GHz. Experimental results were analyzed by the exchange charge model of the crystal field affecting terbium ions in low-symmetry Pb2+ positions with the chlorine sevenfold coordination and the charge compensating vacancy in the nearest potassium site. The calculated values ofg-factors and ZFS were in agreement with the experimental data. The nature of a broad EPR line with ZFS of about 180 GHz and of additional weak EPR lines observed as satellites of the main Tb3+ lines was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号