首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Highly ordered and stepped ZnO comb-like structures were fabricated using conventional thermal evaporation method. Zn powder covered by a layer of a mixture of ZnO and graphite was employed as the Zn source. The obtained ZnO comb-like structures are several tens of micrometers and some of them are even up to 100 μm. Both the widths of the belts and the lengths of the branches gradually decrease along the growth direction of ZnO comb-like structures. Under the most suitable condition, ZnO nanorods branches have uniform diameters and are evenly distributed on the belt-like stem. Possible growth process of ZnO comb-like structures was discussed. The effect of growth temperature on the morphology of the obtained products was also investigated. Room-temperature photoluminescence spectra from the ZnO comb-like structures and the nanorods film reveal weak UV emission and strong green emission.  相似文献   

2.
One-dimensional (1D) and quasi-1D ZnO nanostructures have been fabricated by a kind of new spray-pyrolysis-assisted thermal evaporation method. Pure ZnO powder serves as an evaporation source. Thus-obtained products have been characterized by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM). The room temperature photoluminescence spectrum of these ZnO nanostructures is presented. The results show that as-grown ZnO nanomaterials have a hexagonal wurtzite crystalline structure. Besides nanosaws, nanobelts and nanowires, complex ZnO nanotrees have also been observed in synthesized products. The study provides a new simple route to construct 1D and quasi-1D ZnO nanomaterials, which can probably be extended to fabricate other oxide nanomaterials with high melting point and doped oxide nanomaterials.  相似文献   

3.
Centimetre-long ZnO fibres are synthesized by vapour transportation via thermal evaporation of ZnO powders. The growth process is carried out in a graphite crucible, in which ZnO powder is loaded as the source material, and a silicon wafer is positioned on the top of the crucible as the growth substrate. During the growth process, the source temperature is kept at 800℃ and the substrate temperature is kept at 600℃. Typical growth time to obtain centimetre-long ZnO fibres is 5-10 hours. Scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) measurement results show that ZnO fibres are single crystalline with high crystalline quality and very low defects concentration.  相似文献   

4.
Zinc oxide (ZnO) nanodonuts have been obtained by vapor phase transport process utilizing a mixture of ZnO, graphite and erbium oxide powder as the evaporation source. ZnO nanodonuts prepared under various thermal processes indicate that ZnO nanodonuts start forming during the initial thermal ramp up stage. A subsequent holding of the growth temperature at 1000 °C causes the nanodonut to evolve into perfectly donut-shaped nanostructure. Additional deposition of ZnO on top of the nanodonut during the holding of the furnace temperature at 1000 °C result in partially filled nanodonuts or hemispherical nanostructures, or donuts that are completely buried beneath ZnO film. Auger electron spectroscopy depth profile analysis indicates that the deposited ZnO film is stoichiometric, whereas the nanodonuts and the completely filled hemispherical nanostructures are porous and are oxygen deficient. The volume density of the nanodonut is estimated to be 20% that of the background ZnO film.  相似文献   

5.
High-density and high aspect-ratio ZnO nanowires were grown on Si(100) substrates by the thermal evaporation of metallic zinc powder without the use of metal catalysts or additives. The as-grown nanowires had diameters in the range of 60-100 nm with lengths 5-15 μm. Detailed structural characterization indicated that the obtained nanowires are single-crystalline with a perfect hexagonal facet and surfaces. The room temperature PL spectrum exhibited strong UV emission, affirming that the as-grown products have good optical properties. The possible growth mechanism for the formation of hexagonal-faceted and perfect surface ZnO nanowires is also discussed.  相似文献   

6.
Novel ZnO microbowls are successfully synthesized by the thermal evaporating of a mixture of ZnS powder and Zn powder. The morphologies of the as-synthesized products can be adjusted by changing the temperature and the type of substrate. The morphologies, microstructures, and photoluminescence properties are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscope, and photoluminescence spectroscopy respectively. The growth mechanism of the as-synthesized ZnO microbowls is proposed based on the experimental results. ZnO microbowls presented here can be used as building blocks to fabricate optical and optoelectronic micro/nano devices.  相似文献   

7.
张正林  郑刚  曲凤玉  武祥 《中国物理 B》2012,21(9):98104-098104
Novel ZnO microbowls are successfully synthesized by thermal evaporating of a mixture of ZnS powder and Zn powder. The morphologies of the as-synthesized products can be adjusted by changing the temperature and the type of substrate. The morphologies, microstructures, and photoluminescence properties are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscope, and photoluminescence spectroscopy respectively. The growth mechanism of the as-synthesized ZnO microbowls is proposed based on the experimental results. ZnO microbowls presented here can be used as building blocks to fabricate optical and optoelectronic micro/nano devices.  相似文献   

8.
Fe doped ZnO powder samples (Fe/Zn=0.05 and 0.1) were prepared by sol-gel method with H2 deoxidation at 450 °C for several hours or just heated in air at the same temperature. It was showed by vibrating sample magnetometer (VSM) that samples heat treated in H2 could show strong ferromagnetism at room temperature while samples treated in air only show very weak magnetism. XRD using Co kα X-ray revealed that the samples heated in H2 were not pure phase but like a granular system and the magnetism mainly results from Fe3O4 in samples while samples heated in air showed pure ZnO phase. Our work indicated that H2 deoxidation treatment may be an effective technique to fabricate such magnetic semiconductor-like materials with Curie temperature higher than room temperature.  相似文献   

9.
The morphology and photoluminescence properties of ZnO nanostructures synthesized from deferent zinc sources by a vapor deposition process were investigated. The zinc sources involved pure zinc, ZnO, and ZnCO3 powders, respectively. It was found that the zinc sources have a strong effect on the morphology of the ZnO nanostructures. For the pure zinc and ZnO sources, uniform ZnO nanowires and tetrapods are obtained, respectively. However, in the case of the ZnCO3 source, the products are nanowire–tetrapod combined nanostructures, in which ZnO nanowires grow from the ends of tetrapod arms. The morphology differences of these products may be mainly concerned with the yield and constituents of the corresponding zinc vapor. Photoluminescence measurements show that the nanowires have a relatively stronger near-band UV emission than the other products. The strongest green-light emission from the tetrapods implies that more defects exist in the tetrapods. An evident peak at 430 nm is found in the spectrum of the nanowire–tetrapod combined nanostructures, which may be caused by oxygen-depletion interface traps. PACS 73.61.Tm; 81.10.Bk; 78.55.Et  相似文献   

10.
ZnO nanowires were synthesized in a short time of a few seconds through a simple thermal evaporation of Zn powder using solar energy under air atmosphere. The Zn powder was heated by focusing sunlight on the Zn powder employing a magnifying lens. This strategy heated Zn to its evaporation temperature resulting in its oxidation in air. This procedure formed ZnO nanowires of ∼10 nm diameter and ∼2 μm length. As only Zn powder without any catalysts was used as the source material, it is suggested that the growth of the nanowires occurs through a vapor-solid mechanism. The cathodoluminescence (CL) spectrum from such ZnO nanowires showed strong ultraviolet emission indicating their highly crystalline quality besides good optical properties.  相似文献   

11.
Cu-Zn/ZnO nanocomposites with a novel core-shell structure have been prepared by a surface precipitation process in aqueous solution. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy are employed to analyze the structure and morphology of the present products. The influence of the annealing temperature on the core-shell structure of the nanocomposites is investigated, and a possible growth model is proposed. Furthermore, the gas sensors based on the Cu-Zn/ZnO nanocomposites are fabricated and tested, which exhibits high sensitivity and fast response to CO. The best results are obtained for the sensor based on the film annealed at 350 °C, which shows that the sensitivity is about 6.3 when the sensor is exposed to 100 ppm CO at the operating temperature of 240 °C. The possible sensing mechanism of the Cu-Zn/ZnO sensing film has also been discussed.  相似文献   

12.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.  相似文献   

13.
ZnO nanowires, nanorods and nanoribbons have been prepared by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si(1 0 0) substrates without any catalyst. The nanostructures are grown as a function of substrate temperature ranging from 900 to 1300 K. These nanostructures are of the size 100–300 nm in diameter or width and several tens of micrometers in length. We studied the influence of the substrate temperature on the luminescent properties of these nanostructures. We observed a strong relationship between the substrate temperature and the green emission band in ZnO, i.e., the photoluminescence study revealed that the green emission peak of the ZnO nanostructures is suppressed relative to the band edge emission when the substrate temperature is decreased from 1300 to 900 K.  相似文献   

14.
ZnO micro- and nanostructures were prepared by thermal evaporation of Zn and a mixture of ZnO with graphite. On heating Zn powder in a quartz tube at temperatures between 600 °C to 800 °C, radial growth of nanowires was observed on the source. On increasing the temperature to 900 °C, various interesting micro- and nanostructures of Zn and ZnO were observed to have deposited all over the quartz tube. On the other hand, when ZnO was heated in the presence of graphite, predominant growth of ZnO nanotetrapods was observed. Nanowires and tetrapods of ZnO were characterized by photoluminescence measurements and were found to show significantly improved response for detection of H2S gas at room temperature when compared with earlier studies. The response was seen to improve with increase in oxygen vacancies in the material. PACS 78.55.Et; 07.07.Df  相似文献   

15.
Woo Hyun Nam  Won-Seon Seo 《哲学杂志》2013,93(34):4221-4231
Densification of nanostructured ZnO–ZnS core–shell powder was carried out by spark plasma sintering to produce a bulk ZnO–ZnS composite. By adjusting the sintering temperature, we could fabricate a bulk ZnO–ZnS composite without destroying the original core–shell structure of the powder. X-ray diffraction and transmission electron microscopy were used to characterize the microstructural properties of the core–shell powder and its sintering behaviour. During spark plasma sintering, phase transition from a sphalerite to a wurtzite structure was observed in the ZnS shell and the crystallographic orientation of the ZnS shell was affected by the ZnO core.  相似文献   

16.
ZnO thin films have been grown on a-plane (1,1,−2,0) sapphire substrates by metalorganic vapor phase epitaxy (MOVPE) at low substrate temperature of 350 °C. It is showed that the crystal and electrical quality of the thin films was improved by using a ZnO buffer layer. The photoluminescence (PL) measurements indicate that the ZnO thin films grown at such a low substrate temperature have a strong UV emission.  相似文献   

17.
We employed epi-GaN substrates for ZnO film growth, and studied the deposition and post-annealing effects. ZnO films were grown by pulsed laser deposition (PLD) method. The as-grown films were annealed for one hour under atmospheric pressure air. ZnO morphologies after annealing were investigated and the post-annealed ZnO films grown at T g =700oC have very smooth surfaces and the rms with roughness is about 0.5 nm. Finally, ZnO post-annealed buffer layer was inserted between ZnO epilayer and GaN/sapphire substrates. It is confirmed by AFM that growth temperature of 700oC helps the films grow in step-flow growth mode. It is observed by cathode luminescence spectrum that the ZnO film grown at 700oC has very low visible luminescence, indicating the decrease of the deep level defects. It is also revealed by Hall measurements that carrier concentration is decreased by increasing the growth temperatures. It is suggested that low temperature buffer layer growth and post-annealing technique can be used to fabricate ZnO hetero-epitaxy.  相似文献   

18.
We deposited high quality ZnO film by electrophoretic deposition (EPD) using high quality ZnO powder prepared by solid-state pyrolytic reaction. X-ray photoelectron spectroscopy (XPS) and the infrared (IR) absorption spectrum clearly indicate that the ZnO phase powder has been prepared. Transmission electron microscope (TEM) imaging and x-ray diffraction (XRD) show that the average grain size of the powder is about 20nm. XRD and selected-area electron diffraction (SAED) reveal that the ZnO film has a polycrystalline hexagonal wurtzite structure. Only a strong ultraviolet emission peak at 390nm can be observed at room temperature.  相似文献   

19.
At low temperature (400℃), chemical vapour deposition (CVD) is employed to make comb-like Co-doped ZnO nanocantilever arrays (NAs). The magnetization curves of the as-synthesized Co-doped ZnO NAs indicate the existence of above-room-temperature ferromagnetism (ARTFM) (Curie temperature, Tc 〉 300 K) whereas undoped ZnO NAs does not. The corresponding ferromagnetic source mechanism is discussed, in which defects play an important role due to the strong green light emission.  相似文献   

20.
张晓松  李岚  王达健 《发光学报》2006,27(2):206-210
用热处理方法对电子束蒸发制备的ZnO:Zn荧光薄膜分别进行400,600℃退火处理。采用X射线衍射、X射线光电子能谱、扫描电子显微镜、光致发光光谱等方法,表征了ZnO:Zn荧光薄膜的结构、成分、形貌、发光性能。在ZnO:Zn荧光薄膜的X射线衍射谱和扫描电子显微镜照片中,可以看出经退火处理后结晶状况大大改善,多晶结构趋于规则,晶粒更加均匀且膜层结构更加致密。在ZnO:Zn荧光薄膜的光致发光谱中,检测到490nm处发光峰,认为一价氧空位(VO)充当发光中心,且薄膜的光致发光强度受热处理温度的影响很大。实验表明随着退火温度的升高,薄膜的结晶程度提高,弥补了薄膜晶体表面的表面缺陷,薄膜的发光性能不断提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号