首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
基于考虑了粒子发射的随机Langevin模型,计算了重裂变核240Am在 鞍点后发射的中子、质子和$ \alpha $粒子多重性作为鞍点后摩擦强度($ \beta $)的函数。结果表明在高激发能($ E^* $)和高角动量($ \ell $)条件下,这些轻粒子发射对摩擦的敏感性变强。进而,比较了在(高$ E^* $,低$ \ell $)和(低$ E^* $,高$ \ell $)这两个不同初始条件下,240Am核在鞍点后蒸发的粒子随$ \beta $的演化。发现前者不但能增强核摩擦对粒子发射的影响,也显著提高了带电粒子对$ \beta $的敏感性。在实验方面,我们建议可以用中能重离子碰撞的方式产生高激发的重裂变系统,来更精确地用粒子发射(尤其是轻带电粒子)来探测鞍点后的摩擦强度。  相似文献   

2.
研究了3$M_{\odot}$AGB星中26Al核合成的网络计算和核反应率的灵敏度分析。结合最新的核反应率数据,建立了一个从碳到硅完整的核反应网络,计算了26Al的丰度。结果表明,26Al首先在AGB星中有效合成,随着核反应的进行,然后被一系列的核反应消耗。MgAl循环出现在26Al的网络中。我们将核反应网络中的主要核反应分为三类:(n, ${\rm{\gamma }}$),(p,${\rm{\gamma }}$)和($\alpha$, ${\rm{\gamma }}$),并对核反应率的灵敏度进行了详细的分析。已经确定了每一类中最有影响的核反应,它们是25Mg(n, ${\rm{\gamma }}$)26Mg,25Mg(p, ${\rm{\gamma }}$)26Al,26Mg(p, ${\rm{\gamma }}$)27Al,21Ne(p, ${\rm{\gamma }}$)22Na,18O($\alpha$, ${\rm{\gamma }}$)22Ne和22Ne($\alpha$,${\rm{\gamma }}$)26Mg。在目前网络所涉及的所有核反应中,25Mg(p, ${\rm{\gamma }}$)26Al是对26Al的产量有最大的影响,它值得核实验物理学家的关注。  相似文献   

3.
本工作通过重离子熔合蒸发反应 40Ar+183W,产生了质子滴线附近的轻锕系核素 219U和 216Ac。实验在兰州充气反冲谱仪(SHANS)上开展,目标核产生后从薄靶中反冲出来,在飞行中与大量的本底粒子进行分离并偏转到位于焦平面的探测系统中。探测系统对注入的反冲核和随后的$ \alpha $衰变进行探测,并利用寻找$ \alpha $衰变链的方法对产物进行寻找和鉴别。在本次工作中,219U已知的$ \alpha $衰变数据得到改善,其基态衰变到子核215Th基态的$ \alpha $粒子能量被确定为$E_{\alpha}\!=\!9\ 763(15)$ keV,半衰期为$ T_{1/2} $=60(7) μs。首次发现了219U两个新的$ \alpha $衰变分支,其能量为$ E_{\alpha} $=9 246(17) keV, 8 975(17) keV,并指认它们分别是从 219U 的基态衰变到子核 215Th的低激发态 (5/2–)和(3/2–)。此外,通过对 216Ac的$ \alpha $衰变数据的分析,证实了216Ac存在同核异能态。  相似文献   

4.
基于加速器中子源的硼中子俘获治疗(Boron Neutron Capture Therapy, BNCT)是新一代的放射治疗方法,束流整形体(Beam Shaping Assembly, BSA)作为硼中子俘获治疗装置的重要组成部分,其作用是将中子源中的快中子束流慢化至超热中子能区(0.5 eV~10 keV),并尽可能减少快中子、热中子以及$\gamma $射线的成分,使其满足BNCT用于治疗的中子束要求。本工作基于蒙特卡罗软件包Geant4(Geometry and Tracking),以2.5 MeV,10 mA质子流强的7Li(p, n)7Be中子源为对象,研究分析了AlF3 、Fluental、Al2O3、Al作为慢化体材料时,不同的厚度对束流出口处的超热中子注量率、超热中子注量与热中子注量比值、快中子成分、$ \gamma $成分所产生的影响。计算表明,当选用厚度为25 cm的AlF3作为慢化体材料时,经过整形慢化后的超热中子束的束流参数,均满足国际原子能机构(International Atomic Energy Agency, IAEA)的中子束流参数推荐值。  相似文献   

5.
轻带电粒子诱发反应产生次级中子的研究对于加速器屏蔽设计和优化具有重要意义。利用Geant4程序结合INCL、BIC、BERT物理模型分别计算了33 MeV的d核、65 MeV的3He核和4He核轰击厚的碳、铜和铅靶在轻带电粒子诱发反应产生次级中子的研究对于加速器屏蔽设计和优化具有重要意义。利用Geant4程序结合INCL、BIC、BERT物理模型分别计算了33 MeV的d核、65 MeV的3He核和4He核轰击厚的碳、铜和铅靶在$0^{\circ}$$15^{\circ}$$45^{\circ}$$75^{\circ}$$135^{\circ}$等方向出射中子的双微分产额,并与实验数据进行了比较。研究表明,对于33 MeV的d核诱发的核反应,INCL模型的计算结果基本上再现了碳靶和铜靶的实验数据,但高估了铅靶直接过程产生的中子。BIC模型和BERT模型的计算结果没有重现弹核削裂过程对应的宽峰。对于65 MeV的3He核诱发的核反应,三个模型的计算结果均未能重现前向角弹核削裂过程产生的中子,但在$15^{\circ}$$45^{\circ}$$75^{\circ}$$135^{\circ}$上三个模型的计算结果与实验数据符合较好。对于65 MeV的4He核诱发的核反应,INCL模型的计算结果与碳靶和铜靶的实验数据符合较好,但低估了铅靶的中子产额。BIC模型和BERT模型的计算结果低估了碳靶的实验数据,且在大角度上略微高估了铅靶的实验数据。  相似文献   

6.
在偶-偶核基态中寻找稳定的三轴形状, 其中最大三轴形变为$ \left| \gamma \right| $≈30°,仍然是核结构的一个主要主题。 在本工作中,使用推转Woods-Saxon(WS)壳模型来研究Os-Pt区基态和集体转动态中可能的三轴形状。为寻找核态可能存在的三轴形变,具体用对力-形变-转动频率自洽推转壳模型对偶-偶176-202Os和182-204Pt同位素进行了总Routhian面计算。计算是在四极形变($\;{\beta _2} $, $ \gamma $)网格中进行的,而十六极形变$\;{\beta _4} $可变。事实上,在四极形变($\;{\beta _2} $, $\gamma $)的每个网格点上,计算的能量相对于十六极形变$\; {\beta _4} $最小化。发现某些核的基态譬如196Os和188-194Pt既非扁椭球亦非长椭球, 而是在这些核中基态极小值是形状非轴对称的,即三轴形变。同时, 我们把从实验数据提取出的转动惯量与我们的计算结果作比较, 显示实验数据不能很好地与转动假定相一致,说明有振动行为。此外,我们使用一种辅助的方法提取了平衡$\gamma _{0} $值,该值支持我们的预言。  相似文献   

7.
${\mathbb{Z}}_3$-QCD是具有严格中心对称性的类QCD理论,研究其在特殊条件下的性质有助于理解QCD退禁闭相变。本文应用三种味道的Polyakov-loop拓展的夸克介子模型作为${\mathbb{Z}}_3$-QCD的低能有效理论,研究了不同中心对称性破缺模式下的Roberge-Weiss(RW)相变。为保证RW周期性,本文采用味道依赖的虚化学势$(\mu_{\rm{u}},\mu_{\rm{d}},\mu_{\rm{s}})={\rm{i}}T(\theta-2C\pi/3,\theta,\theta+2C\pi/3)$,其中${\mathbb{Z}}_3$-QCD是具有严格中心对称性的类QCD理论,研究其在特殊条件下的性质有助于理解QCD退禁闭相变。本文应用三种味道的Polyakov-loop拓展的夸克介子模型作为${\mathbb{Z}}_3$-QCD的低能有效理论,研究了不同中心对称性破缺模式下的Roberge-Weiss(RW)相变。为保证RW周期性,本文采用味道依赖的虚化学势$(\mu_{\rm{u}},\mu_{\rm{d}},\mu_{\rm{s}})={\rm{i}}T(\theta-2C\pi/3,\theta,\theta+2C\pi/3)$,其中$0\!\leqslant\!{C}\!\leqslant1$。传统的和夸克反馈效应改进的两种不同Polyakov-loop势被分别用于相应的计算。研究表明,当$N_{\rm{f}}\!=\!3$$C\!\ne\!1$时,RW相变出现在$\theta=\pi/3$(mod $2\pi/3$)处,其强度随$C$值的减小而加强;当$C\!=\!1$$N_{\rm{f}}\!=\!2\!+\!1$时,RW相变位置出现反常,变为$\theta=2\pi/3$(mod $2\pi/3$);而当$C\!=\!1$$N_{\rm{f}}\!=\!1\!+\!2$时,RW相变点又返回$\theta\!=\!\pi/3$(mod $2\pi/3$)。上述几种情形的RW相变端点均为三相点。研究发现,夸克反馈效应使得RW相变强度减弱,退禁闭相变温度变低,但并未改变前述的定性结论。  相似文献   

8.
在等效质量模型框架下,考虑线性禁闭和一阶微扰相互作用的贡献并通过拟合$ \mathrm{p} $$ \mathrm{n}$$\Lambda$$ \Delta $的质量来得到模型参数。发现,等效质量模型能够较好地给出符合实验的重子质量谱。而禁闭强度$D$、强耦合常数$\alpha_{\rm{s}}$以及夸克质量因子$f$与微扰强度$C$之间都存在关联,并能够很好地用解析公式逼近。除此之外,单胶子交换相互作用的色磁部分在重子质量谱中起着重要作用,从而使自旋$J=1/2$和3/2的重子之间的质量差最高达到300 MeV。为了更好地描述超子质量,对于包含奇异夸克的一对夸克间的相互作用我们进一步采用不同的强耦合常数,其具体的模型参数通过拟合$ \Sigma $$ \Xi $的质量得到。基于本工作得到的等效质量模型参数组,能够更好地描述$ \mathrm{ud}$夸克物质团、奇异子以及致密星。  相似文献   

9.
本工作研究了双重味重子的理想混合角。理想混合角是将$^{2S+1}(l_\lambda)_J$态转换为具有确定重夸克对称性的态时所对应的旋转角度。在标准的$\rho-\lambda$图像下,求得了$L_\rho=0$情形时重夸克对称性的态$\left(J, j_\ell\right)$$\left(J, s_{\rm q}+j_\rho\right)= $$ \left(J, \{^4l_\lambda/^2l_\lambda\}\right)$态之间的理想混合角,其中${\boldsymbol{j}}_\ell={\boldsymbol{l}}_\lambda+{\boldsymbol{s}}_{\rm q}$, ${\boldsymbol{s}}_\rho={\boldsymbol{s}}_{\rm Q1}+{\boldsymbol{s}}_{\rm Q2}$${\boldsymbol{j}}_\rho={\boldsymbol{s}}_\rho+{\boldsymbol{L}}_\rho$。本工作指出当研究双重味重子的衰变性质时,需要采用$(1S1p)1/2^-$$(1S1p)3/2^-$等理想混合态。  相似文献   

10.
中子星物质主要是由高密度非对称核物质组成。目前通过地面重离子碰撞等实验来认识高密度非对称核物质的物态还存在很大的不确定性。随着对中子星天文观测精度的提高以及可观测量的增多,基于对中子星的天文观测来反向约束高密度非对称核物质物态成为了可能。从理论上去探讨中子星的可观测量与不同密度段物态方程的关联程度,将有助于上述反向对中子星物质物态的研究。本文利用分段式多方物态方程,通过对中子星的半径(R)、潮汐形变参数($\varLambda$)、转动惯量(I)等可观测量的计算分析,给出了这些观测量与物态方程各密度段的关联度。结果表明,质量为1.4$ M_{\odot}$的典型中子星潮汐形变参数($\varLambda$)和f-模频率($\nu$)主要与$ 0.5\rho_{\rm{sat}} \sim 1.5\rho_{\rm{sat}}$$ 2.5\rho_{\rm{sat}} \sim 3.5\rho_{\rm{sat}}$$3.5\rho_{\rm{sat}} \sim $$ 4.5\rho_{\rm{sat}}$ 三个密度段物态方程有较强关联;中子星半径(R)主要与$ 1.5\rho_{\rm{sat}} \sim 3.5\rho_{\rm{sat}}$及壳层物态有较强关联;转动惯量(I)与$ 4.5\rho_{\rm{sat}}$以下各密度段均有一定关联。  相似文献   

11.
纳剂量学量正在成为新的表征辐射品质的量,也是用于精确计算相对生物学效应(RBE)的基础数据。具有相同剂量平均传能线密度(LET)离子束混合辐射场导致的生物学效应也未必相同。为研究关键纳剂量学指标[电离簇尺寸NICS$\geqslant 1 $的条件概率密度分布的一阶矩($M_1^{{C_1}}$)、NICS$\geqslant 2$的条件概率密度分布的一阶矩($M_1^{{C_2}}$)、NICS$\geqslant 2 $的累计概率($F_2^{{C_1}}$)和NICS$\geqslant 3 $的累计概率($F_3^{{C_2}}$)]以及RBE在相同剂量平均LET混合辐射场中的分布,在蒙特卡罗(Monte Carlo,MC)模拟的基础上,结合单能离子束关键纳剂量学指标数据集,计算得到了不同能量碳离子束在不同贯穿深度处相同剂量平均LET混合辐射场中的$M_1^{{C_1}}$$M_1^{{C_2}}$$F_2^{{C_1}}$$F_3^{{C_2}}$及RBE值。计算结果显示:在相同剂量平均LET混合辐射场中,不同能量碳离子束的$F_3^{{C_2}}$没有发生显著变化,而$M_1^{{C_1}}$$M_1^{{C_2}}$$F_2^{{C_1}}$变化显著,且随能量的增大而减小,并且随剂量平均LET的增加,$M_1^{{C_1}}$$M_1^{{C_2}}$$F_2^{{C_1}}$变化差异逐渐变大。正是由于$M_1^{{C_1}}$$M_1^{{C_2}}$$F_2^{{C_1}}$$F_3^{{C_2}}$的不同,在相同剂量平均LET混合辐射场中基于纳剂量学模型计算得到的RBE值也显著不同。这些结果表明,剂量平均LET并不能很好地用于描述离子束混合辐射场的品质,而关键纳剂量学指标则有望成为表征离子束混合辐射场品质的量。  相似文献   

12.
提出基于混合束模型的相对生物学效应(RBE)加权剂量鲁棒优化方法,用于减少碳离子束射程和摆位偏差对生物剂量分布的影响。建立概率组合鲁棒优化模型,利用二次型目标函数表达式,分别制定针对物理吸收剂量和RBE加权剂量的碳离子束治疗计划,并基于共轭梯度优化算法求解出各自最优的权重解,使得靶区和危及器官(OAR)实际剂量分布在射程和摆位偏差组合情况下尽量满足剂量要求。采用C型靶模型测试鲁棒优化方法的有效性。与基于计划靶区(PTV)的常规优化方法相比,针对物理吸收剂量的鲁棒优化计划临床靶区(CTV)的$ \Delta {D}_{95{\text{%}} } $减少10.00 cGy,OAR的$ \Delta {D}_{5{\text{%}} } $$ \Delta {D}_{\mathrm{m}\mathrm{a}\mathrm{x}} $分别减少21.50和35.97 cGy,计划的鲁棒性得到了很好的提升。针对RBE加权剂量的鲁棒优化计划CTV的$ \Delta {D}_{95{\text{%}} } $降低14.00 cGy(RBE),OAR的$ \Delta {D}_{5{\text{%}} } $$ \Delta {D}_{\mathrm{m}\mathrm{a}\mathrm{x}} $分别减少19.00和26.28 cGy(RBE),说明该方法不仅减少了CTV的生物剂量变化,也减少了OAR的生物剂量热点。该结果证明了基于混合束模型的RBE加权剂量鲁棒优化方法在有效提高碳离子放疗计划鲁棒性的同时使OAR也得到了很好的保护。  相似文献   

13.
当一个简单谐振子波函数(SHO)作为有效波函数时,在SHO波函数里面一个重要的参数是有效$ \, \beta$值。得到了简单谐振子波函数有效$ \, \beta$值($ \, \beta_{\rm eff}$)在坐标空间和动量空间的解析表达式。将解析式运用到轻介子系统($u\bar{u}, \, u\bar{s}$)比较 $ \, \beta_{\rm eff}$的行为,结果表明在基态时坐标空间的$ \, \beta_ {{\rm eff}, \, \boldsymbol{r}}$和动量空间的$ \, \beta_ {{\rm eff}, \, \boldsymbol{p}}$在康奈尔势下的值不相同,而在高激发态时两者大小相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号