首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, we investigate some new interesting solution structures of the(2+1)-dimensional bidirectional Sawada–Kotera(bSK) equation. We obtain soliton molecules by introducing velocity resonance. On the basis of soliton molecules, asymmetric solitons are obtained by changing the distance between two solitons of molecules. Based on the N-soliton solutions,several novel types of mixed solutions are generated, which include the mixed breather-soliton molecule solution by the module resonance of the wave number and partial velocity resonance,the mixed lump-soliton molecule solution obtained by partial velocity resonance and partial long wave limits, and the mixed solutions composed of soliton molecules(asymmetric solitons), lump waves, and breather waves. Some plots are presented to clearly illustrate the dynamic features of these solutions.  相似文献   

2.
In this paper, based on N-soliton solutions, we introduce a new constraint among parameters to find the resonance Y-type soliton solutions in (2+1)-dimensional integrable systems. Then, we take the (2+1)-dimensional Sawada–Kotera equation as an example to illustrate how to generate these resonance Y-type soliton solutions with this new constraint. Next, by the long wave limit method, velocity resonance and module resonance, we can obtain some new types of hybrid solutions of resonance Y-type solitons with line waves, breather waves, high-order lump waves respectively. Finally, we also study the dynamics of these interaction solutions and indicate mathematically that these interactions are elastic.  相似文献   

3.
In this paper, by the complexification of the wave number of the soliton given by the Hirota bilinear method, we get the breather solutions. Lumps of the BKP equations are constructed by full degeneration of the breathers, i.e., the limit of infinitely large period of the breathers. The localization characters of the 1-order lump by contour line method are studied analytically. The partial degeneration of the breathers yields hybrid solutions including soliton, lump and breathers.  相似文献   

4.
Starting from a general sixth-order nonlinear wave equation,we present its multiple kink solutions,which are related to the famous Hirota form.We also investigate the restrictions on the coefficients of this wave equation for possessing multiple kink structures.By introducing the velocity resonance mechanism to the multiple kink solutions,we obtain the soliton molecule solution and the breather-soliton molecule solution of the sixth-order nonlinear wave equation with particular coefficients.The three-dimensional image and the density map of these soliton molecule solutions with certain choices of the involved free parameters are well exhibited.After matching the parametric restrictions of the sixth-order nonlinear wave equation for having three-kink solution with the coefficients of the integrable bidirectional Sawada-Kotera-Caudrey-Dodd-Gibbons(SKCDG) equation,the breather-soliton molecule solution for the bidirectional SKCDG equation is also illustrated.  相似文献   

5.
Soliton molecules were first discovered in optical systems and are currently a hot topic of research. We obtain soliton molecules of the(2+1)-dimensional fifth-order Kd V system under a new resonance condition called velocity resonance in theory. On the basis of soliton molecules, asymmetric solitons can be obtained by selecting appropriate parameters. Based on the N-soliton solution, we obtain hybrid solutions consisting of soliton molecules,lump waves and breather waves by partial velocity resonance and partial long wave limits. Soliton molecules,and some types of special soliton resonance solutions, are stable under the meaning that the interactions among soliton molecules are elastic. Both soliton molecules and asymmetric solitons obtained may be observed in fluid systems because the fifth-order Kd V equation describes the ion-acoustic waves in plasmas, shallow water waves in channels and oceans.  相似文献   

6.
Fokas system is the simplest (2+1)-dimensional extension of the nonlinear Schr?dinger (NLS) equation (Eq.(2), Inverse Problems 10 (1994) L19-L22).By appropriately limiting on soliton solutions generated by the Hirota bilinear method, the explicit forms of $n$-th breathers and semi-rational solutions for the Fokas system are derived. The obtained first-order breather exhibits arange of interesting dynamics. For high-order breather, it has more rich dynamical behaviors.The first-order and the second-order breather solutions are given graphically. Using the long wave limit in soliton solutions, rational solutions are obtained, which are used to analyze the mechanism of the rogue wave and lump respectively.By taking a long waves limit of a part of exponential functions in $f$ and $g$ appeared in the bilinear form of the Fokas system, many interesting hybrid solutions are constructed. The hybrid solutions illustrate various superposed wave structures involving rogue waves, lumps, solitons, and periodic line waves. Their rather complicated dynamics are revealed.  相似文献   

7.
Li Sun  Jiaxin Qi  Hongli An 《理论物理通讯》2020,72(12):125009-115
Based on a special transformation that we introduce, the N-soliton solution of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is constructed. By applying the long wave limit and restricting certain conjugation conditions to the related solitons, some novel localized wave solutions are obtained, which contain higher-order breathers and lumps as well as their interactions. In particular, by choosing appropriate parameters involved in the N-solitons, two interaction solutions mixed by a bell-shaped soliton and one breather or by a bell-shaped soliton and one lump are constructed from the 3-soliton solution. Five solutions including two breathers, two lumps, and interaction solutions between one breather and two bell-shaped solitons, one breather and one lump, or one lump and two bell-shaped solitons are constructed from the 4-soliton solution. Five interaction solutions mixed by one breather/lump and three bell-shaped solitons, two breathers/lumps and a bell-shaped soliton, as well as mixing with one lump, one breather and a bell-shaped soliton are constructed from the 5-soliton solution. To study the behaviors that the obtained interaction solutions may have, we present some illustrative numerical simulations, which demonstrate that the choice of the parameters has a great impacts on the types of the solutions and their propagation properties. The method proposed can be effectively used to construct localized interaction solutions of many nonlinear evolution equations. The results obtained may help related experts to understand and study the interaction phenomena of nonlinear localized waves during propagations.  相似文献   

8.
Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt (gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps, breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.  相似文献   

9.
This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach and symbolic computations. We successfully construct some new lump, lump-kink, breather wave, lump periodic, and some other new interaction solutions. All the reported solutions are verified by inserting them into the original equation with the help of the Wolfram Mathematica package. The solution's visual characteristics are graphically represented in order to shed more light on the results obtained. The findings obtained are useful in understanding the basic nonlinear fluid dynamic scenarios as well as the dynamics of computational physics and engineering sciences in the related nonlinear higher dimensional wave fields.  相似文献   

10.
In this paper, we investigate a (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation in fluid dynamics. Based on the Hirota method, we give a bilinear auto-Bäcklund transformation. Via the truncated Painlevé expansion, we get a Painlevé-type auto-Bäcklund transformation. With the aid of the symbolic computation, we derive some one- and two-kink soliton solutions. We present the oblique and parallel elastic interactions between the two-kink solitons. Via the extended homoclinic test technique, we construct some breather-wave solutions. Besides, we derive some lump solutions with the periods of the breather-wave solutions to the infinity. We observe that the shapes of a breather wave and a lump remain unchanged during the propagation. Based on the polynomial-expansion method, travelling-wave solutions are constructed.  相似文献   

11.
《中国物理 B》2021,30(6):60202-060202
The nonlinear Schro¨dinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schro¨dinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schro¨dinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.  相似文献   

12.
LUO Lin 《理论物理通讯》2010,54(2):208-214
In this paper, multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli (BLMP) equation by using Hirotabilinear method and Riemann theta function. At the same time, weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations between the periodic wave solutions and the soliton solutions.  相似文献   

13.
The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky-Konopelchenko(BK) equation. The solutions obtained contain first-order, second-order, and third-order wave solutions. At the critical point,the second-order derivative and Hessian matrix for only one point is investigated, and the lump solution has one maximum value. He's semi-inverse variational principle(SIVP) is also used for the generalized BK equation. Three major cases are studied, based on two different ansatzes using the SIVP. The physical phenomena of the multiple soliton solutions thus obtained are then analyzed and demonstrated in the figures below, using a selection of suitable parameter values.This method should prove extremely useful for further studies of attractive physical phenomena in the fields of heat transfer, fluid dynamics, etc.  相似文献   

14.
The nonlocal nonlinear Gerdjikov-Ivanov (GI) equation is one of the most important integrable equations, which can be reduced from the third generic deformation of the derivative nonlinear Schrödinger equation. The Darboux transformation is a successful method in solving many nonlocal equations with the help of symbolic computation. As applications, we obtain the bright-dark soliton, breather, rogue wave, kink, W-shaped soliton and periodic solutions of the nonlocal GI equation by constructing its 2n-fold Darboux transformation. These solutions show rich wave structures for selections of different parameters. In all these instances we practically show that these solutions have different properties than the ones for local case.  相似文献   

15.
For the Benjamin Ono equation, the Hirota bilinear method and long wave limit method are applied to obtain the breathers and the rogue wave solutions. Bright and dark rogue waves exist in the Benjamin Ono equation, and their typical dynamics are analysed and illustrated. The semirational solutions possessing rogue waves and solitons are also obtained, and demonstrated by the three-dimensional figures. Furthermore, the hybrid of rogue wave and breather solutions are also found in the Benjamin Ono equation.  相似文献   

16.
In this paper, we mainly study the time-space fractional strain wave equation in microstructured solids. He’s variational method, combined with the two-scale transform are implemented to seek the solitary and periodic wave solutions of the time-space strain wave equation. The main advantage of the variational method is that it can reduce the order of the differential equation, thus simplifying the equation, making the solving process more intuitive and avoiding the tedious solving process.Finally, the numerical results are shown in the form of 3D and 2D graphs to prove the applicability and effectiveness of the method. The obtained results in this work are expected to shed a bright light on the study of fractional nonlinear partial differential equations in physics.  相似文献   

17.
Bo Ren 《理论物理通讯》2021,73(3):35003-27
The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial differential systems.In this paper,we construct a(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli(eBLMP)equation which fails to pass the Painleve property.The D’Alembert-type wave of the eBLMP equation is still obtained by introducing one arbitrary function of the traveling-wave variable.The multi-solitary wave which should satisfy the velocity resonance condition is obtained by solving the Hirota bilinear form of the eBLMP equation.The dynamics of the three-soliton molecule,the three-kink soliton molecule,the soliton molecule bound by an asymmetry soliton and a one-soliton,and the interaction between the half periodic wave and a kink soliton molecule from the eBLMP equation are investigated by selecting appropriate parameters.  相似文献   

18.
In this paper, new explicit and exact solutions for a compound KdV-Burgers equation are obtained using the hyperbolic function method and the Wu elimination method, which include new solitary wave solutions and periodic solutions. Particularly important cases of the equation, such as the compound KdV, mKdV-Burgers and mKdV equations can be solved by this method. The method can also be applied to solve other nonlinear partial differential equation and equations.  相似文献   

19.
This paper is concerned with a negative order modified Korteweg-de Vries (nmKdV) equation which is in the negative flow of the mKdV hierarchy. We construct the breather solutions by Hirota's bilinear method and derive the infinite conservation laws through the Lax pair of the nmKdV equation. By constructing a new Lyapunov function with the conservation laws, we obtain the nonlinear stability of the breather solutions.  相似文献   

20.
In this paper, we propose a new method, the variable separation technique, for obtaining a breather and rogue wave solution to the nonlinear evolution equation. Integrable systems of the derivative nonlinear Schrödinger type are used as three examples to illustrate the effectiveness of the presented method. We then obtain a family of rational solutions. This family of solutions includes the Akhmediev breather, the Kuznetsov-Ma breather, versatile rogue waves, and various interactions of localized waves. Moreover, the main characteristics of these solutions are discussed and some graphics are presented. More importantly, our results show that more abundant and novel localized waves may exist in the multicomponent coupled equations than in the uncoupled ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号