首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
New approaches to the fabrication of microstructures of special shape were developed for polymers. Unusual superhydrophobic surface structures were achieved with the use of flexible polymers and hierarchical molds.Flexible polyurethane?acrylate coatings were patterned with microstructures with use of microstructured aluminum mold in a controlled UV-curing process. Electron microscope images of the UV-cured coatings on polymethylmethacrylate (PMMA) substrates revealed micropillars that were significantly higher than the corresponding depressions of the mold (even 47 vs. 35 μm). The elongation was achieved by detaching the mold from the flexible, partially cured acrylate surface and then further curing the separated microstructure. The modified acrylate surface is superhydrophobic with a water contact angle of 156° and sliding angle of < 10°.Acrylic thermoplastic elastomers (TPE) were patterned with micro?nanostructured aluminum oxide molds through injection molding. The hierarchical surface of the elastomer showed elongated micropillars (57 μm) with nail-head tops covered with nanograss. Comparison with a reference microstructure of the same material (35 μm) indicated that the nanopores of the micro?nanomold assisted the formation of the nail-shaped micropillars. The elasticity of the TPE materials evidently plays a role in the elongation because similar elongation has not been found in hierarchically structured thermoplastic surfaces. The hierarchical micronail structure supports a high water contact angle (164°), representing an increase of 88° relative to the smooth TPE surface. The sliding angle was close to zero degrees, indicating the Cassie–Baxter state.  相似文献   

2.
Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The surfaces that undergo changes in surface properties due to plasma treatment have a tendency to revert back to their original states. Thus, the stability of the plasma induced changes on polymer surfaces over a desired time period is an important issue. The objective of this study was to examine the effect of ageing on atmospheric-pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 min. Contact angle made by water droplet on polymer surfaces were measured to study surface energy changes. Modification of surface chemical structure was examined using X-ray photoelectron spectroscopy (XPS). Contact angle decreased from 93° for untreated samples to 30° for samples treated with plasma for 10 min. After 10 days the contact angle for the 10 min plasma treated sample increased to 67°, but it never reverted back to that of the untreated surface. Similarly, the oxygen-carbon (O:C) ratio increased from 0.136 for untreated samples to 0.321 for 10 min plasma-treated samples, indicating an increase in surface energy.  相似文献   

3.
A simple method of preparing hydro-oleophobic anitreflective films with high laser-damage threshold is reported in this article. By adding fluoroalkylsilanes (FAS) into reactant mixture as a co-precursor, FAS modified SiO2 was obtained under base catalyzed hydrolysis and condensation of tetraethoxysilane. The dip-coating films were deposited on two sides of fused silica substrates.The experimental results on the effect of adding fluoroalkylsilanes (FAS) as a co-precursor on the hydro-oleophobicity and optical properties of tetraethoxysilane (TEOS) based silica AR films, are reported. The hydro-oleophobicity of the films was tested by the contact angle measurements and the highest water contact angle of 136° and oil (peanut) contact angle of 93° were obtained. The surface chemical modification of the hydro-oleophobic films was confirmed using Fourier transform infrared spectroscopy (FTIR). For the films based on FAS and TEOS, additional absorption bands at 1100 cm?1 corresponding to C–F bond presented, clearly indicating the organic modification of the films. The highest optical transmittance of the hydro-oleophobic films was found to be 99.5%. By a Nd:YAG lasers the laser-damage threshold of as-deposited films was measured at 351 nm wavelength (1 ns). The laser-damage threshold was as high as 22.6 J/cm2.  相似文献   

4.
The local adsorption site of the monotartrate and bitartrate species of R,R-tartaric acid deposited on Cu(110) have been determined by scanned-energy mode photoelectron diffraction (PhD). In the monotartrate phase the molecule is found to adsorb upright through the O atoms of the single deprotonated carboxylic acid (carboxylate) group, which are located in different off-atop sites with associated Cu―O bond lengths of 1.92 ± 0.08 Å and 1.93 ± 0.06 Å; the plane of the carboxylate group is tilted by 17 ± 6° off the surface normal. The bitartrate species adopts a ‘lying down’ orientation, bonding to the surface through all four O atoms of the two carboxylate groups, also in off-atop sites. Three slightly different models give comparably good fits to the PhD data, but only one of these is similar to that predicted by earlier density functional theory calculations. This model is found to have Cu―O bond lengths of 1.93 ± 0.08 Å and 1.95 ± 0.08 Å, while the planes of the carboxylate groups are tilted by 38 ± 6° from the surface normal.  相似文献   

5.
The super-hydrophobic and IR-reflectivity hollow glass microspheres (HGM) was synthesized by being coated with anatase TiO2 and a super-hydrophobic material. The super-hydrophobic self-cleaning property prolong the life time of the IR reflectivity. TBT and PFOTES were firstly applied and hydrolyzed on HGM and then underwent hydrothermal reaction to synthesis anatase TiO2 film. For comparison, the PFOTES/TiO2 mutual-coated HGM (MCHGM), PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The MCHGM had bigger contact angle (153°) but smaller sliding angle (16°) than F-SCHGM (contact angle: 141.2°; sliding angle: 67°). Ti-SCHGM and MCHGM both showed similar IR reflectivity with ca. 5.8% increase compared with original HGM and F-SCHGM. For the thermal conductivity, coefficients of F-SCHGM (0.0479 W/(m K)) was basically equal to that of the original HGM (0.0475 W/(m K)). Negligible difference was found between the thermal conductivity coefficients of MCHGM-coated HGM (0.0543 W/(m K)) and Ti-SCHGM (0.0546 W/(m K)).  相似文献   

6.
Angular and velocity distributions of desorbing O2 during irradiation of 308 nm laser pulses were studied on a stepped Pt(1 1 3) surface. With increases in the coverage, three desorption components collimated at around 12°, 30° and 50° successively appeared when the desorption angle was changed in a plane along the step edge. The translational temperature also showed maxima at these collimation angles, and the values were slightly lower than previous results for 193 nm irradiation. Some possible desorption mechanisms are discussed.  相似文献   

7.
The damage distributions in Si(1 0 0) surface after 1.0 and 0.5 keV Ar+ ion bombardment were studied using MEIS and Molecular dynamic (MD) simulation. The primary Ar+ ion beam direction was varied from surface normal to glancing angle. The MEIS results show that the damage thickness in 1.0 keV Ar ion bombardment is reduced from about 7.7 nm at surface normal incidence to 1.3 nm at the incident angle of 80°. However, the damage thickness in 0.5 keV Ar ion bombardment is reduced from 5.1 nm at surface normal incidence to 0.5 nm at the incident angle of 80°. The maximum atomic concentration of implanted Ar atoms after 1 keV ion bombardment is about 10.5 at% at the depth of 2.5 nm at surface normal incidence and about 2.0 at% at the depth of 1.2 nm at the incident angle of 80°. However, after 0.5 keV ion bombardments, it is 8.0 at% at the depth of 2.0 nm for surface normal incidence and the in-depth Ar distribution cannot be observable at the incident angle of 80°. MD simulation reproduced the damage distribution quantitatively.  相似文献   

8.
Optical interferometry techniques were used for the first time to measure the surface resistivity and surface conductivity of anodised aluminium samples in aqueous solution, without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0–2.5% H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodised (oxide) film of the aluminium samples during the anodization process. Then, the alternating current (AC) impedance (resistance) of the anodised aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0–2.5% H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or surface conductivity=1/surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and surface conductivity (σ) of the aluminium samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured values of the resistivity for the anodised aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4×1012  Ω cm in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide, 85% Al2O3 (5×1010 Ω cm in air at temperature 30 °C), 96% Al2O3 (1×1014  Ω cm in air at temperature 30 °C), and 99.7% Al2O3 (>1×1014 Ω cm in air at temperature 30 °C).  相似文献   

9.
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2 × 1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ± 22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by ? 4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (< 10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.  相似文献   

10.
Tendons and ligaments have similar but slightly different structure and composition. Crimps of tendons and ligaments are morphological structures related to the elastic functional properties of these connective tissues. Aim of this study was to investigate the morphological arrangement of collagen fibres, fibrils and crimping pattern of suprapatellar (rectus femoris tendon-RFT and vastus intermedius tendon-VIT) and infrapatellar connective tissues (patellar ligament-PL) to relate their structural aspects to their common function role of leg extension. RFT, VIT and PL were removed from knees of Sprague–Dawley rats and light and electron microscopy (TEM and SEM) performed. Sagittal sections showed that collagen array and crimping pattern were similar in RFT and PL but differed from VIT. Morphometric analysis confirmed that crimp number was about the same in RFT and PL (5.4 ± 1.4 and 6.1 ± 2.8 respectively), but it was almost three times higher in VIT (14.5 ± 4.7). Similarly crimp top angle in RFT and PL (141.5 ± 15.0° and 146.2 ± 12.2° respectively) was significantly higher than in VIT (122.3 ± 14.8°) and the crimp base length was more than twice as wide in RFT (75.5 ± 22.6 μm) and PL (72.3 ± 28.9 μm) than in VIT (36 ± 14.1 μm). The smaller, fewer and most crimped crimps in VIT show that this tendon has a greater elastic recoil and responds to higher forces as among quadriceps muscles the vastus intermedius belly contributes the most during knee extension. By contrast, RFT acting as a “stopper” tendon also plays a ligament role by limiting an excessive flexion of the joint during postural rest position of the knee.  相似文献   

11.
N. Pauly  S. Tougaard 《Surface science》2010,604(13-14):1193-1196
In XPS analysis, two effects, which significantly reduce the measured peak intensity, are usually neglected: the core hole left behind in an XPS process which causes “intrinsic” excitations and excitations as the photoelectron pass through the surface region. We have calculated these effects quantitatively for various energies, geometries, and materials. Instead of considering the two effects separately, we introduce a new parameter, namely the correction parameter for XPS or CPXPS, which takes into account both effects. We define this CPXPS as the change in probability for emission of a photoelectron caused by the presence of the surface and the core hole in comparison with the situation where the core hole is neglected and the electron travels the same distance in an infinite medium. The calculations are performed within the dielectric response theory by means of the QUEELS–XPS software determining the energy-differential inelastic electron scattering cross-sections for X-ray photoelectron spectroscopy (XPS) including surface and core hole effects. This study has been carried out for electron energies between 300 eV and 3400 eV, for angles to the surface normal between 0° and 60° and for various materials. We find that the absolute effect is a reduction by 35–45% in peak intensities but that the variation in CPXPS with material, angle and energy are < ± 10% for emission angle ≤ 60° and photoelectron energy ≤ 1500 eV. This implies that when XPS analysis is done using relative intensities, the combined effect of the surface and of the core hole is typically less than ≈ ± 10% for geometries and energies normally used in XPS. In practice, it is however difficult to determine the bare peak intensity without the intrinsic electrons because the two overlap in energy.  相似文献   

12.
The effect of 60 keV Ar+-ion beam sputtering on the surface topography of p-type GaAs(1 0 0) was investigated by varying angle of incidence of the ion (0–60°) with respect to substrate normal and the ion fluence (2 × 1017–3 × 1018 ions/cm2) at an ion flux of 3.75 × 1013 ions/cm2-s. For normal incidence and at a fluence of 2 × 1017 ions/cm2, holes and islands are observed with the former having an average size and density of 31 nm and 4.9 × 109 holes/cm2, respectively. For 30° and 45° off-normal incidence, in general, a smooth surface appears which is unaffected by increase of fluence. At 60° off-normal incidence dots are observed while for the highest fluence of 3 × 1018 ions/cm2 early stage of ripple formation along with dots is observed with amplitude of 4 nm. The applicability and limitations of the existing theories of ion induced pattern formation to account for the observed surface topographies are discussed.  相似文献   

13.
In barium borate (BBO) crystals, sodium and potassium ions, inherited due to the preparation technique, are dominant charge carriers. The conductivity between layers is higher; the conductivity activation energy and the conductivity at 350 °C being equal to 1.01±0.05 eV and (1.3±0.2)×10−8 S/cm, respectively. The conductivity activation energy and the conductivity at 350 °C along the channels are equal to 1.13±0.05 eV and to (4±0.2)×10−9 S/cm, respectively. Relative static permittivity is almost isotropic, and equal to 7.65±0.05. Upon storing of cesium–lithium borate (CLBO) crystals, pre-heating to 600 °C eliminates the influence of surface humidity. At 500 K, the ionic conductivity ranges from 4×10−12 to 2×10−10 S/cm; the conductivity activation energy ranges from 1.01 to 1.17 eV. Relative static permittivity is equal to 7.4±0.3.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(6):2092-2098
This study showed that temperature influences the rate of separation of fat from natural whole milk during application of ultrasonic standing waves. In this study, natural whole milk was sonicated at 600 kHz (583 W/L) or 1 MHz (311 W/L) with a starting bulk temperature of 5, 25, or 40 °C. Comparisons on separation efficiency were performed with and without sonication. Sonication using 1 MHz for 5 min at 25 °C was shown to be more effective for fat separation than the other conditions tested with and without ultrasound, resulting in a relative change from 3.5 ± 0.06% (w/v) fat initially, of −52.3 ± 2.3% (reduction to 1.6 ± 0.07% (w/v) fat) in the skimmed milk layer and 184.8 ± 33.2% (increase to 9.9 ± 1.0% (w/v) fat) in the top layer, at an average skimming rate of ∼5 g fat/min. A shift in the volume weighted mean diameter (D[4,3]) of the milk samples obtained from the top and bottom of between 8% and 10% relative to an initial sample D[4,3] value of 4.5 ± 0.06 μm was also achieved under these conditions. In general, faster fat separation was seen in natural milk when natural creaming occurred at room temperature and this separation trend was enhanced after the application of high frequency ultrasound.  相似文献   

15.
Hydrothermally synthesised Sr hexaferrite (HT-SrM) powder with a distinct plate-like shape and conventional Sr hexaferrite (c-SrM) powder were used to screen print SrM thick films on alumina substrates. In the case of the HT-SrM thick films, a very strong perpendicular magnetic anisotropy has been observed with remanence values of up to 42±2 J/T kg for the perpendicular direction and 15±1 J/T kg for the in-plane direction, and with coercivities of around 159±8 kA/m for both directions when fired at 1300°C. When fired at 1150°C, the remanences were 49±2 and 27±2 J/T kg for the two directions with a higher coercivity of 247±8 kA/m for both directions. The SEM micrographs showed that the platelet grains in the printed films lay with their flat surfaces on the substrate and XRD results revealed that the c-axis of the grains oriented perpendicularly to the film surface. The (0 0 8) plane, which is, for a random oriented sample, a very weak peak, appeared as the strongest in the XRD pattern for the films. EDX and XRD studies indicated significant reaction at the interfaces between the film and the substrate when the sintering temperature was raised to 1350°C.For the SrM thick films obtained from planetary milled ultrafine Sr hexaferrite and conventional Sr hexaferrite powder, a slight in-plane anisotropy could be observed with a coercivity of 318±8 kA/m.  相似文献   

16.
This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550 Pa to 690 Pa and the low temperature of the sample from −18 °C to −22 °C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of “native” plant samples, allowing correct evaluation of our results, free of error and artifacts.  相似文献   

17.
Hydrogen atoms on solid surfaces were measured directly by elastic recoil detection analysis (ERDA) using medium energy (100–150 keV) Ne+ ions with an excellent sensitivity of (~ 1 × 1012 H/cm2) without any absorber foils and time-of-flight techniques. An electrostatic toroidal analyzer acquired H+ ions with energy around 11 keV recoiled from Si(111)-1 × 1-H surfaces. The H+ fraction strongly depends upon emerging angle and takes a value more than 50% at the angle below 70° and a saturated value of 17% at the angle above 80° with respect to surface normal. We detected H atoms on the reduced TiO2(110) exposed to water molecules at room temperature (2 L) and estimated the absolute amount of H to be ~ 2.0 × 1014 H/cm2 corresponding to ~ 38% (~ 0.38 ML) of the bridging oxygen atoms.  相似文献   

18.
Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700–850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1–1.3 µm and 1.45–1.6 µm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.  相似文献   

19.
A. Jablonski  C.J. Powell 《Surface science》2010,604(21-22):1928-1939
We present an analysis of the dependence of the backscattering correction factor (BCF) in Auger-electron spectroscopy (AES) on the analyzer acceptance angle. Illustrative BCF calculations are presented for Pd M5N45N45 Auger electrons as a function of primary-electron energy for primary-electron angles of incidence, θ0, of 0° and 80° and for various values of the analyzer acceptance angle. It was necessary to generalize the BCF definition for the case of an analyzer with an arbitrarily large acceptance angle; this was done with a new function, the integral emission depth distribution function. BCFs calculated from an advanced model of electron transport in the surface region of the Pd sample varied weakly with analyzer half-cone angle for θ0 = 0° but more strongly for θ0 = 80° where there were BCF differences varying between 19% at a primary energy of 1 keV and 6% at a primary energy of 5 keV. These BCF differences are due in part to variations of the BCF with emission angle and in part to variations of the density of inner-shell ionizations within the information depth for the detected Auger electrons. The latter variations are responsible for differences larger than 10% between BCFs from the widely used simplified BCF model and those from the more accurate advanced model for primary energies less than about 5 keV for θ0 = 80°. For normal incidence of the primary beam, differences greater than 10% between BCFs from the simplified and advanced models were found for primary energies between 1 keV and 4 keV. These BCF differences indicate that the simplified model can provide only approximate BCF values. In addition, the simplified model does not provide any BCF dependence on Auger-electron emission angle or analyzer acceptance angle.  相似文献   

20.
This paper presents the structure and electronic properties of graphene grown on 6H-SiC(0001) and SiC(0001?) surfaces via Ni-silicidation reactions at temperatures around 800 °C. Silicidation reactions take place at temperature higher than 400 °C for Ni(10 ML)/SiC and a single-phase θ-Ni2Si(0001)-layer grows epitaxially on SiC(0001?) at 500 °C, whereas a mixed phase silicide-layer is formed on the SiC(0001) substrate. Annealing at 800 °C leads to growth of ordered graphite layers on both SiC(0001?) and SiC(0001) surfaces with an areal occupation ratio of ~ 65%, which surround the Ni-silicide islands. High-resolution ion scattering analysis reveals that single- and double-layer of graphite grow on the SiC(0001?) and SiC(0001), respectively. The dispersion curve of the π band for the double-layer graphite (DG) on the Si-face lies about 1 eV above that of the single-layer graphite (SG) on the C-face around the Γ-point. The work functions of the SG/SiC(0001?) and DG/SiC(0001) are derived to be 5.15 ± 0.05 and 4.25 ± 0.05 eV, respectively, which coincide well with the theoretical prediction based on the ab initio calculations. The present results indicate that the electronic states of graphene are influenced by the interaction with supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号