首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface and core hole effects in X-ray photoelectron spectroscopy
Authors:N Pauly  S Tougaard
Institution:1. Université Libre de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium;2. Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
Abstract:In XPS analysis, two effects, which significantly reduce the measured peak intensity, are usually neglected: the core hole left behind in an XPS process which causes “intrinsic” excitations and excitations as the photoelectron pass through the surface region. We have calculated these effects quantitatively for various energies, geometries, and materials. Instead of considering the two effects separately, we introduce a new parameter, namely the correction parameter for XPS or CPXPS, which takes into account both effects. We define this CPXPS as the change in probability for emission of a photoelectron caused by the presence of the surface and the core hole in comparison with the situation where the core hole is neglected and the electron travels the same distance in an infinite medium. The calculations are performed within the dielectric response theory by means of the QUEELS–XPS software determining the energy-differential inelastic electron scattering cross-sections for X-ray photoelectron spectroscopy (XPS) including surface and core hole effects. This study has been carried out for electron energies between 300 eV and 3400 eV, for angles to the surface normal between 0° and 60° and for various materials. We find that the absolute effect is a reduction by 35–45% in peak intensities but that the variation in CPXPS with material, angle and energy are < ± 10% for emission angle ≤ 60° and photoelectron energy ≤ 1500 eV. This implies that when XPS analysis is done using relative intensities, the combined effect of the surface and of the core hole is typically less than ≈ ± 10% for geometries and energies normally used in XPS. In practice, it is however difficult to determine the bare peak intensity without the intrinsic electrons because the two overlap in energy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号